MAKING PROGRESS

Latest collaborative agreement brings Texas LNG export facility one step closer to reality

NextDecade enters a deal with two major investors to move toward final investment decision for the Rio Grande LNG Project. Image via Shutterstock.

The Rio Grande LNG Project (RGLNG), an LNG export facility in Cameron County, Texas with planned capacity for exporting up to 27 million tons of LNG per year, makes a giant leap toward the final investment decision stage with the latest agreements signed by NextDecade Energy announced earlier today.

Entry to this next phase includes executing investor agreements with Global Infrastructure Partners (GIP) and TotalEnergies (TTE). In addition, TTE commits to purchasing 5.4 million tons of LNG annually for the next 20 years from the first three trains (RGLNG Phase 1) that will transport to the facility, with additional options to purchase from subsequent trains.

“This announcement marks a momentous milestone for NextDecade,” said Matt Schatzman, chairman and CEO of NextDecade, in the release. “We are excited to work with GIP and TotalEnergies on RGLNG and our proposed CCS project at RGLNG. We are also eager to grow our partnership with GIP and TotalEnergies focusing on our shared vision to reduce carbon emissions in the energy sector.”

“With the world increasingly moving toward sustainable solutions, this partnership among GIP, TotalEnergies and NextDecade reinforces our shared commitment to helping lead the transition and shaping of the future of energy,” added Bayo Ogunlesi, chairman and Chief Executive Officer of Global Infrastructure Partners. “This venture marks a critical step in displacing coal usage and upholds GIP’s commitment to promoting decarbonization, energy security and energy affordability. Our shared vision with TotalEnergies and NextDecade, combined with our capabilities, will undoubtedly help catalyze the development of cleaner energy.”

"We are delighted to join forces with NextDecade and GIP on the development of this new US LNG project, for which TotalEnergies shall leverage its extensive experience in LNG and technical expertise in major industrial project development," commented Patrick Pouyanné, chairman and CEO of TotalEnergies. “Our involvement in this project will enhance our LNG capacity by 5.4 MTPA strengthening our ability to ensure Europe's gas supply security and to provide Asian customers with an alternative fuel that emits half as much as coal.”

Pending execution of the FID and definitive documentation, GIP becomes the majority investor in Phase 1 of the RGLNG, and TTE will acquire another 16.67%. Both companies will also have options to invest in Trains 4 and 5 servicing the South Texas LNG export facility and options to invest in future carbon capture and sequestration (CCS) efforts planned for RGNLG.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News