guest column

Expert: Using data to reduce Houston’s oil and gas carbon footprint

"To solve the climate crisis, confidence in emissions data is crucial." Photo via Getty Images

Sustainability has been top of mind for all industries as we witness movements towards reducing carbon emissions. For instance, last year, the Securities and Exchange Commission (SEC) proposed a new rule that requires companies to disclose certain climate-related activities in their reporting on a federal level. Now, industries and cities are scrambling to ensure they have strategies in the right place.

While the data behind sustainability poses challenges across industries, it is particularly evident in oil and gas, as their role in energy transition is of the utmost importance, especially in Texas. We saw this at the COP26 summit in Glasgow in November 2021, for example, in the effort to reduce carbon emissions on both a national and international scale and keep global warming within 1.5 degrees Celsius.

The event also made it clear achieving this temperature change to meet carbon neutrality by 2030 won’t be possible if organizations rely on current methods and siloed data. In short, there is a data problem associated with recent climate goals. So, what does that mean for Houston’s oil and gas industry?

Climate is a critical conversation – and tech can help

Houston has long been considered the oil and gas capital of the world, and it is now the epicenter of energy transition. You can see this commitment by the industry in the nature of the conferences as well as the investment in innovation centers.

In terms of the companies themselves, over the past few years each of the major oil and gas players have organized and grown their low carbon business units. These units are focused on bringing new ideas to the energy ecosystem. The best part is they are not working alone but joining forces to find solutions. One of the highest profile examples is ExxonMobil’s Carbon Capture and Underground Storage project (CCUS) which directly supports the Paris Agreement.

Blockchain technology is needed to improve transparency and traceability in the energy sector and backing blockchain into day-to-day business is key to identifying patterns and making decisions from the data.

The recent Blockchain for Oil and Gas conference, for instance, focused on how blockchain can help curate emissions across the ecosystem. Recent years have also seen several additional symposiums and meetings – such as the Ion and

Greentown Houston – that focus on helping companies understand their carbon footprint.

How do we prove the data?

The importance of harmonizing data will become even more important as the SEC looks to bring structure to sustainability reporting. As a decentralized, immutable ledger where data can be inputted and shared at every point of action, blockchain works by storing information in interconnected blocks and providing a value-add for insuring carbon offsets. To access the data inside a block, users first need to communicate with it. This creates a chain of information that cannot be hacked and can be transmitted between all relevant parties throughout the supply chain. Key players can enter, view, and analyze the same data points securely and with assurance of the data’s accuracy.

Data needs to move with products throughout the supply chain to create an overall number for carbon emissions. Blockchain’s decentralization offers value to organizations and their respective industries so that higher quantities of reliable data can be shared between all parties to shine a light on the areas they need to work on, such as manufacturing operations and the offsets of buildings. Baking blockchain into day-to-day business practice is key in identifying patterns over time and making data-backed decisions.

Oil and gas are key players

Cutting emissions is not a new practice of the oil and gas industry. In fact, they’ve been cutting emissions estimates by as much as 50 percent to avoid over-reporting.

The traditional process of reporting data has also been time-consuming and prone to human error. Manually gathering data across multiple sources of information delivers no real way to trace this information across supply chains and back to the source. And human errors, even if they are accidental, pose a risk to hefty fines from regulatory agencies.

It’s a now-or-never situation. The industry will need to pivot their approaches to data gathering, sharing, and reporting to commit to emissions reduction. This need will surely accelerate the use of technologies, like blockchain, to be a part of the energy transition. While the climate challenges we face are alarming, they provide the basis we need for technological innovation and the ability to accurately report emissions to stay in compliance.

The Energy Capital of the World, for good

To solve the climate crisis, confidence in emissions data is crucial. Blockchain provides that as well as transparency and reliability, all while maintaining the highest levels of security. The technology provides assurance that the data from other smart technologies, like connected sensors and the Internet of Things (IoT), is trustworthy and accurate.

The need for good data, new technology, and corporate commitment are all key to Houston keeping its title as the energy capital of the world – based on traditional fossil fuels as well as transitioning to clean energy.

------

John Chappell is the director of energy business development at BlockApps. This article originally ran on InnovationMap.

Trending News

A View From HETI

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

Trending News