taking notes

3 things to know this week: Key energy transition events, an alternative materials startup rebrands, and more

A podcast to listen to, a really big deal to learn more about, and events not to miss — here's what all to know this week. Photo via Getty Images

Editor's note: Dive headfirst into the new week with three quick things to catch up on in Houston's energy transition.

Events not to miss

Put these Houston-area energy-related events on your calendar.

  • World Geothermal Energy Day will take place at Karbach Brewery on October 17. Network with and learn more about Houston's geothermal community.
  • Energy Day, Houston’s largest free family festival showcasing exhibits focused on science, technology, engineering, and mathematics, will take place in downtown on October 19.
  • Connecting the Houston energy tech and climate community, Greentown Houston's Climatetech Summit will take place at its Midtown location on October 22.
  • Ally Energy's GRIT Awards will honor energy leaders and best workplaces on October 30.
  • Taking place in Downtown Houston November 19 to 20, the Global Clean Hydrogen Summit will provide project developers, buyers, and financiers with the information they need to establish winning strategies for global clean hydrogen markets.

Big deal: Lilium Jet rolls out plans for pilot in Houston area

Lilium aims for the first piloted flight of the Lilium Jet to occur early in 2025. Photo via lilium.com

An aircraft that's being touted as the first fully electric jet is taking off from Hobby Airport to serve the greater Houston area.

Lilium Jet, which takes off and lands vertically, is making its United States market debut at Houston-area facilities – Houston Hobby Airport, Conroe North Houston Regional Airport, and The Woodlands Heliport Lilium. Houston-based aircraft brokerage EMCJET will house the Lilium Jet at its Galaxy FBO Houston-area facilities at the airports.

The Lilium Jet is capable of quickly connecting routes like Houston Hobby Airport to Galveston, Houston Spaceport to College Station, The Woodlands to Galveston, and others. The jet is designed for regional travel with its aerodynamic shape. The ducted electric fans prioritize efficiency and speed during forward flight. The jet’s anticipated initial operating range is roughly 110 miles. Lilium aims for the first piloted flight of the Lilium Jet to occur early in 2025. Read more.

Podcast: Houston bio-based materials founder rebrands, evolves future-focused sustainability startup

Zimri T. Hinshaw, founder and CEO of Rheom Materials, joins the Houston Innovators Podcast. Photo courtesy of Rheom

At first, Zimri T. Hinshaw just wanted to design a sustainable, vegan jacket inspired by bikers he saw in Tokyo. Now, he's running a bio-based materials company with two product lines and is ready to disrupt the fashion and automotive industries.

Hinshaw founded Rheom Materials (née Bucha Bio) in 2020, but a lot has changed since then. He moved the company from New York to Houston, built out a facility in Houston's East End Maker Hub, and rebranded to reflect the company's newest phase and extended product lines, deriving from dozens of different ingredients, including algae, seaweed, corn, other fruits and vegetables, and more.

"As a company, we pivoted our technology from growing kombucha sheets to grinding up bacteria nanocellulose from kombucha into our products and then we moved away from that entirely," Hinshaw says on the Houston Innovators Podcast. "Today, we're designing different materials that are more sustainable, and the inputs are varied." Read more.

Trending News

A View From HETI

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants.

Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team released two significant publications that made significant strides relating to carbon capture processes. The first, published in Nature Communications, introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process. Another, featured on the cover of ES&T Engineering, demonstrated a vanadium redox flow system capable of both capturing carbon and storing renewable energy.

“These publications reflect our group’s commitment to fundamental electrochemical innovation and real-world applicability,” Rahimi said in a news release. “From membraneless systems to scalable flow systems, we’re charting pathways to decarbonize hard-to-abate sectors and support the transition to a low-carbon economy.”

According to the researchers, the “A Membraneless Electrochemically Mediated Amine Regeneration for Carbon Capture” research paper marked the beginning of the team’s first focus. The research examined the replacement of costly ion-exchange membranes with gas diffusion electrodes. They found that the membranes were the most expensive part of the system, and they were also a major cause of performance issues and high maintenance costs.

The researchers achieved more than 90 percent CO2 removal (nearly 50 percent more than traditional approaches) by engineering the gas diffusion electrodes. According to PhD student and co-author of the paper Ahmad Hassan, the capture costs approximately $70 per metric ton of CO2, which is competitive with other innovative scrubbing techniques.

“By removing the membrane and the associated hardware, we’ve streamlined the EMAR workflow and dramatically cut energy use,” Hassan said in the news release. “This opens the door to retrofitting existing industrial exhaust systems with a compact, low-cost carbon capture module.”

The second breakthrough, published by PhD student Mohsen Afshari, displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge. The results suggested that the technology could potentially provide carbon removal and grid balancing when used with intermittent renewables, such as solar or wind power.

“Integrating carbon capture directly into a redox flow battery lets us tackle two challenges in one device,” Afshari said in the release. “Our front-cover feature highlights its potential to smooth out renewable generation while sequestering CO2.”

Trending News