up & away

World's first fully electric jet to take off in Houston, connect greater metro area

Lilium aims for the first piloted flight of the Lilium Jet to occur early in 2025. Photo via lilium.com

An aircraft that's being touted as the first fully electric jet is taking off from Hobby Airport to serve the greater Houston area.

Lilium Jet, which takes off and lands vertically, is making its United States market debut at Houston-area facilities – Houston Hobby Airport, Conroe North Houston Regional Airport, and The Woodlands Heliport Lilium. Houston-based aircraft brokerage EMCJET will house the Lilium Jet at its Galaxy FBO Houston-area facilities at the airports.

“We are excited to transform Galaxy FBO into a cutting-edge hub for the eVTOL innovation,” Jeremy Gee, CEO of Galaxy FBO, says in a news release. "As the future of electric aviation takes flight, this marks a significant step in making Houston a leader in sustainable and efficient transportation solutions. Our team is proud to support Lilium's revolutionary mode of travel that will connect Greater Houston in ways never thought possible."

The Lilium Jet is capable of quickly connecting routes like Houston Hobby Airport to Galveston, Houston Spaceport to College Station, The Woodlands to Galveston, and others. The jet is designed for regional travel with its aerodynamic shape. The ducted electric fans prioritize efficiency and speed during forward flight. The jet’s anticipated initial operating range is roughly 110 miles. Lilium aims for the first piloted flight of the Lilium Jet to occur early in 2025.

“Lilium is serious about expanding in the U.S. and actively progressing towards FAA validation,” Lilium’s Vice President of Commercial Americas Matthew Broffman says in a news release.” As part of our commitment to working with communities across the U.S. and expanding our customer base, we’re excited to showcase our aircraft for the first time in Houston, a city with a proud legacy of aerospace innovation in America.”

The Greater Houston Partnership will also host a discussion with industry leaders on how electric aviation can “revolutionize regional travel” according to a news release.

“Houston is home to the world’s leading aerospace companies, and we’re thrilled to welcome Lilium and this next generation of aviation technology,” says Kevin Tipton, senior director for aerospace and aviation at GHP in a news release. “Together, we’re on the brink of something groundbreaking for our region.”

Trending News

A View From HETI

Ahmad Elgazzar, Haotian Wang and Shaoyun Hao were members of a Rice University team that recently published findings on how acid bubbling can improve CO2 reduction systems. Photo courtesy Rice.

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.

Trending News