plugging into LNG

Houston companies combine for massive tugboat and export project

Houston has its stamp on the project in multiple ways with Gulf LNG Tugs boasting two Houston area companies in Bay-Houston Management LLC and Suderman & Young Towing Company. Photo via glenfarneenergytransition.com

Texas LNG, a four million tonnes per annum liquefied natural gas export terminal to be constructed in the Port of Brownsville, and a subsidiary of Glenfarne Energy Transition, announced the selection of its new partner.

Gulf LNG Tugs of Texas will operate, build, and deliver tugboats under an agreement to assist LNG carriers arriving at the facility. Tugs of Texas is part of a consortium of Suderman & Young Towing Co., Bay-Houston Towing, and Moran Towing Corp., and the tugboats will be among the “most modern, low-emissions tugboats available to serve a facility of Texas LNG’s size” according to the company. This will also align with Texas LNG’s "Green by Design" approach, and the deal is a long-term agreement.

The projected port for Texas LNG is considered to be an area with consistent operating temperatures, and reliable maritime operations with lower probability of impact from inclement weather like storms and damage associated with them. Globally, Texas LNG is also designed to be one of the lowest-emitting export terminals. Texas LNG is developing the project site on the north shore of the Port of Brownsville. This area offers access to a deep-water ship channel in close proximity to the Gulf of Mexico and the Panama Canal.

“Gulf LNG Tugs is excited to be providing marine services in a long-term partnership with Texas LNG,” the companies say in a joint statement. “We are proud to be the exclusive tug operator for LNG vessels to yet another successful LNG project in the Port of Brownsville and look forward to expanding our operations in the port and our presence in the Rio Grande Valley community."

Houston has its stamp on the project in multiple ways with Gulf LNG Tugs boasting two Houston area companies in Bay-Houston Management LLC and Suderman & Young Towing Company.

New York and Houston-based Glenfarne works to provide solutions to lower the world’s carbon footprint, which aligns with the common goals of all the companies involved.

“The Texas LNG team undertook a comprehensive process to identify a marine service provider that not only matches our commitment to environmental stewardship, but also provides our customers with reliable, cost-effective marine services,” Brendan Duval, CEO and Founder of Glenfarne Energy Transition said in a news release. “We are pleased to have Gulf LNG Tugs on board as a partner and look forward to the jobs and local content they will bring to both Texas LNG and the local Rio Grande Valley community."

Texas LNG recently announced that it signed a Heads of Agreement with EQT Corporation for natural gas liquefaction services for 0.5 MTPA of LNG, in addition to partnerships with Baker Hughes and ABB to help develop the terminal. This represents equipment selections for Texas LNG to date that is worth half a billion dollars’ worth.

Construction is slated to begin this year after the financing of the project is finalized.

Trending News

A View From HETI

Rice University researchers have published new findings that shed new light on processes like photosynthesis and solar energy conversion. Photo by Jorge Vidal/Rice University.

Rice University scientists have used a programmable quantum simulator to mimic how energy moves through a vibrating molecule.

The research, which was published in Nature Communications last month, lets the researchers watch and control the flow of energy in real time and sheds light on processes like photosynthesis and solar energy conversion, according to a news release from the university.

The team, led by Rice assistant professor of physics and astronomy Guido Pagano, modeled a two-site molecule with one part supplying energy (the donor) and the other receiving it (the acceptor).

Unlike in previous experiments, the Rice researchers were able to smoothly tune the system to model multiple types of vibrations and manipulate the energy states in a controlled setting. This allowed the team to explore different types of energy transfer within the same platform.

“By adjusting the interactions between the donor and acceptor, coupling to two types of vibrations and the character of those vibrations, we could see how each factor influenced the flow of energy,” Pagano said in the release.

The research showed that more vibrations sped up energy transfer and opened new paths for energy to move, sometimes making transfer more efficient even with energy loss. Additionally, when vibrations differed, efficient transfer happened over a wider range of donor–acceptor energy differences.

“The results show that vibrations and their environment are not simply background noise but can actively steer energy flow in unexpected ways,” Pagano added.

The team believes the findings could help with the design of organic solar cells, molecular wires and other devices that depend on efficient energy or charge transfer. They could also have an environmental impact by improving energy harvesting to reduce energy losses in electronics.

“These are the kinds of phenomena that physical chemists have theorized exist but could not easily isolate experimentally, especially in a programmable manner, until now,” Visal So, a Rice doctoral student and first author of the study, added in the release.

The study was supported by The Welch Foundation,the Office of Naval Research, the National Science Foundation CAREER Award, the Army Research Office and the Department of Energy.

Trending News