Houston has its stamp on the project in multiple ways with Gulf LNG Tugs boasting two Houston area companies in Bay-Houston Management LLC and Suderman & Young Towing Company. Photo via glenfarneenergytransition.com

Texas LNG, a four million tonnes per annum liquefied natural gas export terminal to be constructed in the Port of Brownsville, and a subsidiary of Glenfarne Energy Transition, announced the selection of its new partner.

Gulf LNG Tugs of Texas will operate, build, and deliver tugboats under an agreement to assist LNG carriers arriving at the facility. Tugs of Texas is part of a consortium of Suderman & Young Towing Co., Bay-Houston Towing, and Moran Towing Corp., and the tugboats will be among the “most modern, low-emissions tugboats available to serve a facility of Texas LNG’s size” according to the company. This will also align with Texas LNG’s "Green by Design" approach, and the deal is a long-term agreement.

The projected port for Texas LNG is considered to be an area with consistent operating temperatures, and reliable maritime operations with lower probability of impact from inclement weather like storms and damage associated with them. Globally, Texas LNG is also designed to be one of the lowest-emitting export terminals. Texas LNG is developing the project site on the north shore of the Port of Brownsville. This area offers access to a deep-water ship channel in close proximity to the Gulf of Mexico and the Panama Canal.

“Gulf LNG Tugs is excited to be providing marine services in a long-term partnership with Texas LNG,” the companies say in a joint statement. “We are proud to be the exclusive tug operator for LNG vessels to yet another successful LNG project in the Port of Brownsville and look forward to expanding our operations in the port and our presence in the Rio Grande Valley community."

Houston has its stamp on the project in multiple ways with Gulf LNG Tugs boasting two Houston area companies in Bay-Houston Management LLC and Suderman & Young Towing Company.

New York and Houston-based Glenfarne works to provide solutions to lower the world’s carbon footprint, which aligns with the common goals of all the companies involved.

“The Texas LNG team undertook a comprehensive process to identify a marine service provider that not only matches our commitment to environmental stewardship, but also provides our customers with reliable, cost-effective marine services,” Brendan Duval, CEO and Founder of Glenfarne Energy Transition said in a news release. “We are pleased to have Gulf LNG Tugs on board as a partner and look forward to the jobs and local content they will bring to both Texas LNG and the local Rio Grande Valley community."

Texas LNG recently announced that it signed a Heads of Agreement with EQT Corporation for natural gas liquefaction services for 0.5 MTPA of LNG, in addition to partnerships with Baker Hughes and ABB to help develop the terminal. This represents equipment selections for Texas LNG to date that is worth half a billion dollars’ worth.

Construction is slated to begin this year after the financing of the project is finalized.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

ExxonMobil names new partner to bolster US lithium supply chain with offtake agreement

ev supplies en route

Spring-headquartered ExxonMobil Corp. has announced a new MOU for an offtake agreement for up to 100,000 metric tons of lithium carbonate.

The agreement is with LG Chem, which is building its cathode plant in Tennessee and expects it to be the largest of its kind in the country. The project broke ground a year ago and expects an annual production capacity of 60,000 tons. The lithium will be supplied by ExxonMobil.

“America needs secure domestic supply of critical minerals like lithium,” Dan Ammann, president of ExxonMobil Low Carbon Solutions, says in a news release. “ExxonMobil is proud to lead the way in establishing domestic lithium production, creating jobs, driving economic growth, and enhancing energy security here in the United States.”

The industry currently has a lithium supply shortage due to the material's use in electric vehicle batteries and the fact that most of production happens overseas.

“Building a lithium supply chain with ExxonMobil, one of the world’s largest energy companies, holds great significance,” Shin Hak-cheol, CEO of LG Chem, adds. “We will continue to strengthen LG Chem’s competitiveness in the global supply chain for critical minerals.”

Per the release, the final investment decision is still pending.

Earlier this year, Exxon entered into another energy transition partnership, teaming up with Japan’s Mitsubishi to potentially produce low-carbon ammonia and nearly carbon-free hydrogen at ExxonMobil’s facility in Baytown.

Last month, the company announced it had signed the biggest offshore carbon dioxide storage lease in the U.S. ExxonMobil says the more than 271,000-acre site, being leased from the Texas General Land Office, complements the onshore CO2 storage portfolio that it’s assembling.

3 Houstonians named to prestigious list of climate leaders

who's who

Three Houston executives — Andrew Chang, Tim Latimer, and Cindy Taff — have been named to Time magazine’s prestigious list of the 100 Most Influential Climate Leaders in Business for 2024.

As managing director of United Airlines Ventures, Chang is striving to reduce the airline’s emissions by promoting the use of sustainable aviation fuel (SAF). Jets contribute to about two percent of global emissions, according to the International Energy Agency.

In 2023, Chang guided the launch of the Sustainable Flight Fund, which invests in climate-enhancing innovations for the airline sector. The fund aims to boost production of SAF and make it an affordable alternative fuel, Time says.

Chang tells Time that he’d like to see passage of climate legislation that would elevate the renewable energy sector.

“One of the most crucial legislative actions we could see in the next year is a focus on faster permitting processes for renewable energy projects,” Chang says. “This, coupled with speeding up the interconnection queue for renewable assets, would significantly reduce the time it takes for clean energy to come online.”

At Fervo Energy, Latimer, who’s co-founder and CEO, is leading efforts to make geothermal power “a viable alternative to fossil fuels,” says Time.

Fervo recently received government approval for a geothermal power project in Utah that the company indicates could power two million homes. In addition, Fervo has teamed up with Google to power the tech giant’s energy-gobbling data centers.

In an interview with Time, Latimer echoes Chang in expressing a need for reforms in the clean energy industry.

“Addressing climate change is going to require us to build an unprecedented amount of infrastructure so we can replace the current fossil fuel-dominated systems with cleaner solutions,” says Latimer. “Right now, many of the solutions we need are stalled out by a convoluted permitting and regulatory system that doesn’t prioritize clean infrastructure.”

Taff, CEO of geothermal energy provider Sage Geosystems, oversees her company’s work to connect what could be the world’s first geopressured geothermal storage to the electric grid, according to Time. In August, Sage announced a deal with Facebook owner Meta to produce 150 megawatts of geothermal energy for the tech company’s data centers.

Asked which climate solution, other than geothermal, deserves more attention or funding, Taff cites pumped storage hydropower.

“While lithium-ion batteries get a lot of the spotlight, pumped storage hydropower offers long-duration energy storage that can provide stability to the grid for days, not just hours,” Taff tells Time. “By storing excess energy during times of low demand and releasing it when renewables like solar and wind are not producing, it can play a critical role in balancing the intermittent nature of renewables. Investing in pumped storage hydropower infrastructure could be a game-changer in achieving a reliable, clean energy future.”

Rice University researchers pioneer climatetech breakthroughs in clean water nanotechnology

tapping in

Researchers at Rice University are making cleaner water through the use of nanotech.

Decades of research have culminated in the creation of the Water Technologies Entrepreneurship and Research (WaTER) Institute launched in January 2024 and its new Rice PFAS Alternatives and Remediation Center (R-PARC).

“Access to safe drinking water is a major limiting factor to human capacity, and providing access to clean water has the potential to save more lives than doctors,” Rice’s George R. Brown Professor of Civil and Environmental Engineering Pedro Alvarez says in a news release.

The WaTER Institute has made advancements in clean water technology research and applications established during a 10-year period of Nanotechnology Enabled Water Treatment (NEWT), which was funded by the National Science Foundation. R-PARC will use the institutional investments, which include an array of PFAS-dedicated advanced analytical equipment.

Alvarez currently serves as director of NEWT and the WaTER Institute. He’s joined by researchers that include Michael Wong, Rice’s Tina and Sunit Patel Professor in Molecular Nanotechnology, chair and professor of chemical and biomolecular engineering and leader of the WaTER Institute’s public health research thrust, and James Tour, Rice’s T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering.

“We are the leaders in water technologies using nano,” adds Wong. “Things that we’ve discovered within the NEWT Center, we’ve already started to realize will be great for real-world applications.”

The NEWT center plans to equip over 200 students to address water safety issues, and assist/launch startups.

“Across the world, we’re seeing more serious contamination by emerging chemical and biological pollutants, and climate change is exacerbating freshwater scarcity with more frequent droughts and uncertainty about water resources,” Alvarez said in a news release. “The Rice WaTER Institute is growing research and alliances in the water domain that were built by our NEWT Center.”

———

This article originally ran on InnovationMap.