TECH TO THE RESCUE

Houston Airports roll out eco-friendly fleet of fire rescue vehicles

High-tech firetrucks are ready to serve the area that includes George Bush Intercontinental Airport. Photo courtesy of Houston Airports

Houston Airports and the Houston Fire Department will roll out a new fleet of eco-friendly and health-promoting vehicles this summer.

Four new Aircraft Rescue and Fire Fighting (ARFF) trucks will be deployed at HFD Stations 99 and 92 near IAH. The vehicles were purchased with $4.6 million from the Airport Improvement Fund and will replace a fleet purchased in 2006.

One truck is already operating HFD Station 99. Others are expected to be operational by August, according to Houston Airports.

"The safety of passengers and crew at Bush Airport is our top priority," Steve Runge, director of operations for Houston Airports, says in a statement. "These new ARFF trucks represent a significant investment in the latest firefighting technology, ensuring the Houston Fire Department has the resources it needs to respond swiftly and effectively to any aircraft emergency while utilizing eco-friendly foam."

The vehicles feature several innovative features including:

  • Synthetic fluorine-free foam that extinguishes fires with minimal environmental impact
  • High-capacity water pumps that deliver up to 1,200 gallons of water per minute
  • Specialized rescue equipment for rescuing passengers and crew from crashes
  • Rosenbauer re-circulation air scrubber system that reduces firefighter’s exposure to carcinogenic toxins

They can carry 3,000 gallons of water, 400 gallons of foam, 450 pounds of Purple K dry-chemical and 460 pounds of Halotron to extinguish fires and rescue passengers and crew, according to Houston Airports.

"From the health of the firefighters to protecting people and property at Bush Airport, we appreciate this investment by Houston Airports,” Ronald Krusleski, senior captain and ARFF coordinator for the Houston Fire Department, adds.

Houston Airports also plans to build a 21,000-square-foot facility to replace the current HFD 92 at IAH that will include six apparatus bays, fire inspector and administrative offices, and direct access to the airfield, according to a statement. It'll be funded by $30 million from the Bipartisan Infrastructure Law Airport Infrastructure Grants for Fiscal Year 2024 from the FAA. Hobby Airport also received $15 million to demolish and reconstruct existing ARFF buildings.

Last year Houston Airports also received $12.5 million for projects aimed at reducing greenhouse gas emissions. The projects included replacing existing generators and conducting an energy audit.

———

This article originally ran on InnovationMap.

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News