speeding back

Houston-Dallas bullet train gets back on the rails, races greener Texas travel

The high-speed train project, which is expected to reduce greenhouse gas emissions by more than 100,000 tons per year, is back on track. Photo courtesy of JR Central

In the latest chapter in the saga of the high-speed bullet train between Houston and Dallas, Amtrak is now involved.

According to a press release, Texas Central Partners and Amtrak are exploring a partnership to work together on the proposed Dallas-Houston high-speed rail project that's been under consideration for more than a decade.

Amtrak has cooperated with Texas Central on various initiatives since 2016 and the two entities are now evaluating a potential partnership to determine the line's viability.

“If we are going to add more high-speed rail to this country, the Dallas to Houston Corridor is a compelling proposition and offers great potential,” says Amtrak senior VP of High-Speed Rail Development Programs Andy Byford. “We believe many of the country's biggest and fastest-growing metropolitan areas, like Houston and Dallas, deserve more high quality high-speed, intercity rail service, and we are proud to bring our experience to evaluate this potential project and explore opportunities with Texas Central so the state can meet its full transportation needs.”

The route being proposed would span approximately 240 miles, going at 250 mph, resulting in a trip that would take less than 90 minutes between the two cities.

Texas Central has been working towards getting a train rolling since 2013, including lining up a potential builder in 2021. But the project has had pushback from Texas politicians and landowners along the route; a lawsuit against the project was filed by six rural counties in 2021, and the Texas Legislature passed a law prohibiting the state from spending any funds on the project.

Facing a seeming dead end, Texas Central CEO Carlos Aguilar and its board members resigned in June 2022; Michael Bui, a consultant, has been serving as CEO since then.

Texas Central and Amtrak have submitted applications to several federal programs in connection with further study and design work, including the Consolidated Rail Infrastructure Safety and Improvements (CRISI) grant program, the Corridor Identification and Development program, and the Federal-State Partnership for Intercity Passenger Rail (FSP-National) grant program.

Amtrak previously entered into an agreement with Texas Central to provide through-ticketing using the Amtrak reservation system and other support services for the planned high-speed rail line.

"This high-speed train, using advanced, proven Shinkansen technology, has the opportunity to revolutionize rail travel in the southern U.S., and we believe Amtrak could be the perfect partner to help us achieve that,” says Bui in a statement.

Despite its detractors, the project is forecast to provide social, environmental, employment and economic benefits including reducing greenhouse gas emissions by more than 100,000 tons per year, saving 65 million gallons of fuel and removing 12,500 cars per day from I-45.

The release from Amtrak has statements from both Dallas Mayor Eric L. Johnson and Houston Mayor Sylvester Turner, who calls the collaboration between Texas Central and Amtrak "an important milestone for the City of Houston and this project."

Byford joined Amtrak in April 2023 to begin developing a team focused on high-speed opportunities throughout the U.S. In his newly created role, he will develop and lead the execution of Amtrak’s long-term strategy for high-speed rail throughout the country, including the extension of the Crescent from Mississippi through Louisiana and Texas; Kansas DOT’s Heartland Flyer Extension Corridor Identification and Development (Corridor ID) connecting Wichita to Oklahoma and Texas, and TxDOT’s applications for the Texas Triangle (Houston — Dallas – Fort Worth – San Antonio) routes.

------

This article originally ran on CultureMap.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News