moving up

Houston analyst named energy and geopolitics chair at national think tank

Clay Seigle has joined the Center for Strategic and International Studies. Photo by Douglas Rissing. Courtesy of Getty Images.

Houston-based energy industry analyst Clay Seigle has joined the Center for Strategic and International Studies (CSIS) as a senior fellow and the James R. Schlesinger Chair for Energy and Geopolitics in the Energy Security and Climate Change (ESCC) Program.

“I’m honored to join CSIS as Senior Fellow and the James R. Schlesinger Chair for Energy and Geopolitics,” Seigle said in a news release. “In a time of unprecedented change in global energy markets, CSIS is uniquely positioned to advance policies that promote security, resilience, and innovation. I look forward to working alongside Joseph (Majkut, director of the Energy Security and Climate Change Program) and our outstanding colleagues to deliver impactful research and expand CSIS’s engagement with stakeholders in Washington and Houston.”

Seigle most recently served as director of Global Oil at Rapidan Energy Group, a D.C.-based independent energy analysis firm. At REG, he provided expert analysis on oil market forecasts and geopolitical scenarios to government and private sector stakeholders. He has also held leadership and analysis roles at organizations including Cambridge Energy Research Associates (CERA), the U.S. Department of Energy, Enron and others. He specializes in market intelligence, global energy security and political risk.

Seigle is a board member of the Houston Committee on Foreign Relations and chairs its Finance Committee. He is also a former vice president of the U.S. Association for Energy Economics. He holds a master’s degree in international relations (Middle East) and economics from Johns Hopkins University’s School of Advanced International Studies and a bachelor’s degree in government from the University of Texas at Austin.

The ESCC’s work has focused on developing diverse energy resources for the U.S. and providing leaders with insights on how to address challenges like climate change. According to CSIS, the ESCC program recently launched an Economic Security and Technology Department that aims to tackle topics like using artificial intelligence to maintain energy security.

“Our longstanding energy program is a centerpiece of our department’s work on the drivers of U.S. economic security in an era of technology competition,” Navin Girishankar, president of the CSIS Economic Security and Technology Department, said in a news release. “Clay’s deep understanding of energy markets and energy security will be an asset to CSIS leadership on these issues in the years to come. We are delighted that he is joining our team at a critical time for U.S. economic security policy.”

Trending News

A View From HETI

Rice University researchers have published new findings that shed new light on processes like photosynthesis and solar energy conversion. Photo by Jorge Vidal/Rice University.

Rice University scientists have used a programmable quantum simulator to mimic how energy moves through a vibrating molecule.

The research, which was published in Nature Communications last month, lets the researchers watch and control the flow of energy in real time and sheds light on processes like photosynthesis and solar energy conversion, according to a news release from the university.

The team, led by Rice assistant professor of physics and astronomy Guido Pagano, modeled a two-site molecule with one part supplying energy (the donor) and the other receiving it (the acceptor).

Unlike in previous experiments, the Rice researchers were able to smoothly tune the system to model multiple types of vibrations and manipulate the energy states in a controlled setting. This allowed the team to explore different types of energy transfer within the same platform.

“By adjusting the interactions between the donor and acceptor, coupling to two types of vibrations and the character of those vibrations, we could see how each factor influenced the flow of energy,” Pagano said in the release.

The research showed that more vibrations sped up energy transfer and opened new paths for energy to move, sometimes making transfer more efficient even with energy loss. Additionally, when vibrations differed, efficient transfer happened over a wider range of donor–acceptor energy differences.

“The results show that vibrations and their environment are not simply background noise but can actively steer energy flow in unexpected ways,” Pagano added.

The team believes the findings could help with the design of organic solar cells, molecular wires and other devices that depend on efficient energy or charge transfer. They could also have an environmental impact by improving energy harvesting to reduce energy losses in electronics.

“These are the kinds of phenomena that physical chemists have theorized exist but could not easily isolate experimentally, especially in a programmable manner, until now,” Visal So, a Rice doctoral student and first author of the study, added in the release.

The study was supported by The Welch Foundation,the Office of Naval Research, the National Science Foundation CAREER Award, the Army Research Office and the Department of Energy.

Trending News