Clay Seigle has joined the Center for Strategic and International Studies. Photo by Douglas Rissing. Courtesy of Getty Images.

Houston-based energy industry analyst Clay Seigle has joined the Center for Strategic and International Studies (CSIS) as a senior fellow and the James R. Schlesinger Chair for Energy and Geopolitics in the Energy Security and Climate Change (ESCC) Program.

“I’m honored to join CSIS as Senior Fellow and the James R. Schlesinger Chair for Energy and Geopolitics,” Seigle said in a news release. “In a time of unprecedented change in global energy markets, CSIS is uniquely positioned to advance policies that promote security, resilience, and innovation. I look forward to working alongside Joseph (Majkut, director of the Energy Security and Climate Change Program) and our outstanding colleagues to deliver impactful research and expand CSIS’s engagement with stakeholders in Washington and Houston.”

Seigle most recently served as director of Global Oil at Rapidan Energy Group, a D.C.-based independent energy analysis firm. At REG, he provided expert analysis on oil market forecasts and geopolitical scenarios to government and private sector stakeholders. He has also held leadership and analysis roles at organizations including Cambridge Energy Research Associates (CERA), the U.S. Department of Energy, Enron and others. He specializes in market intelligence, global energy security and political risk.

Seigle is a board member of the Houston Committee on Foreign Relations and chairs its Finance Committee. He is also a former vice president of the U.S. Association for Energy Economics. He holds a master’s degree in international relations (Middle East) and economics from Johns Hopkins University’s School of Advanced International Studies and a bachelor’s degree in government from the University of Texas at Austin.

The ESCC’s work has focused on developing diverse energy resources for the U.S. and providing leaders with insights on how to address challenges like climate change. According to CSIS, the ESCC program recently launched an Economic Security and Technology Department that aims to tackle topics like using artificial intelligence to maintain energy security.

“Our longstanding energy program is a centerpiece of our department’s work on the drivers of U.S. economic security in an era of technology competition,” Navin Girishankar, president of the CSIS Economic Security and Technology Department, said in a news release. “Clay’s deep understanding of energy markets and energy security will be an asset to CSIS leadership on these issues in the years to come. We are delighted that he is joining our team at a critical time for U.S. economic security policy.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Engie signs deal to supply wind power for Texas data center

wind deal

Houston-based Engie North America, which specializes in generating low-carbon power, has sealed a preliminary deal to supply wind power to a Cipher Mining data center in Texas.

Under the tentative agreement, Cipher could buy as much as 300 megawatts of clean energy from one of Engie’s wind projects. The financial terms of the deal weren’t disclosed.

Cipher Mining develops and operates large data centers for cryptocurrency mining and high-performance computing.

In November, New York City-based Cipher said it bought a 250-acre site in West Texas for a data center with up to 100 megawatts of capacity. Cipher paid $4.1 million for the property.

“By pairing the data center with renewable energy, this strategic collaboration supports the use of surplus energy during periods of excess generation, while enhancing grid stability and reliability,” Engie said in a news release about the Cipher agreement.

The Engie-Cipher deal comes amid the need for more power in Texas due to several factors. The U.S. Energy Information Administration reported in October that data centers and cryptocurrency mining are driving up demand for power in the Lone Star State. Population growth is also putting pressure on the state’s energy supply.

Last year, Engie added 4.2 gigawatts of renewable energy capacity worldwide, bringing the total capacity to 46 gigawatts as of December 31. Also last year, Engie signed a new contract with Meta (Facebook's owner) and expanded its partnership with Google in the U.S. and Belgium.

Houston researchers make headway on developing low-cost sodium-ion batteries

energy storage

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

ExxonMobil lands major partnership for clean hydrogen facility in Baytown

power deal

Exxon Mobil and Japanese import/export company Marubeni Corp. have signed a long-term offtake agreement for 250,000 tonnes of low-carbon ammonia per year from ExxonMobil’s forthcoming facility in Baytown, Texas.

“This is another positive step forward for our landmark project,” Barry Engle, president of ExxonMobil Low Carbon Solutions, said in a news release. “By using American-produced natural gas we can boost global energy supply, support Japan’s decarbonization goals and create jobs at home. Our strong relationship with Marubeni sets the stage for delivering low-carbon ammonia from the U.S. to Japan for years to come."

The companies plan to produce low-carbon hydrogen with approximately 98% of CO2 removed and low-carbon ammonia. Marubeni will supply the ammonia mainly to Kobe Power Plant, a subsidiary of Kobe Steel, and has also agreed to acquire an equity stake in ExxonMobil’s low-carbon hydrogen and ammonia facility, which is expected to be one of the largest of its kind.

The Baytown facility aims to produce up to 1 billion cubic feet daily of “virtually carbon-free” hydrogen. It can also produce more than 1 million tons of low-carbon ammonia per year. A final investment decision is expected in 2025 that will be contingent on government policy and necessary regulatory permits, according to the release.

The Kobe Power Plant aims to co-fire low-carbon ammonia with existing fuel, and reduce CO2 emissions by Japan’s fiscal year of 2030. Marubeni also aims to assist the decarbonization of Japan’s power sector and steel manufacturing industry, chemical industry, transportation industry and various others sectors.

“Marubeni will take this first step together with ExxonMobil in the aim of establishing a global low-carbon ammonia supply chain for Japan through the supply of low-carbon ammonia to the Kobe Power Plant,” Yoshiaki Yokota, senior managing executive officer at Marubeni Corp., added in the news release. “Additionally, we aim to collaborate beyond this supply chain and strive towards the launch of a global market for low-carbon ammonia. We hope to continue to actively cooperate with ExxonMobil, with a view of utilizing this experience and relationship we have built to strategically decarbonize our power projects in Japan and Southeast Asia in the near future.”