Clay Seigle has joined the Center for Strategic and International Studies. Photo by Douglas Rissing. Courtesy of Getty Images.

Houston-based energy industry analyst Clay Seigle has joined the Center for Strategic and International Studies (CSIS) as a senior fellow and the James R. Schlesinger Chair for Energy and Geopolitics in the Energy Security and Climate Change (ESCC) Program.

“I’m honored to join CSIS as Senior Fellow and the James R. Schlesinger Chair for Energy and Geopolitics,” Seigle said in a news release. “In a time of unprecedented change in global energy markets, CSIS is uniquely positioned to advance policies that promote security, resilience, and innovation. I look forward to working alongside Joseph (Majkut, director of the Energy Security and Climate Change Program) and our outstanding colleagues to deliver impactful research and expand CSIS’s engagement with stakeholders in Washington and Houston.”

Seigle most recently served as director of Global Oil at Rapidan Energy Group, a D.C.-based independent energy analysis firm. At REG, he provided expert analysis on oil market forecasts and geopolitical scenarios to government and private sector stakeholders. He has also held leadership and analysis roles at organizations including Cambridge Energy Research Associates (CERA), the U.S. Department of Energy, Enron and others. He specializes in market intelligence, global energy security and political risk.

Seigle is a board member of the Houston Committee on Foreign Relations and chairs its Finance Committee. He is also a former vice president of the U.S. Association for Energy Economics. He holds a master’s degree in international relations (Middle East) and economics from Johns Hopkins University’s School of Advanced International Studies and a bachelor’s degree in government from the University of Texas at Austin.

The ESCC’s work has focused on developing diverse energy resources for the U.S. and providing leaders with insights on how to address challenges like climate change. According to CSIS, the ESCC program recently launched an Economic Security and Technology Department that aims to tackle topics like using artificial intelligence to maintain energy security.

“Our longstanding energy program is a centerpiece of our department’s work on the drivers of U.S. economic security in an era of technology competition,” Navin Girishankar, president of the CSIS Economic Security and Technology Department, said in a news release. “Clay’s deep understanding of energy markets and energy security will be an asset to CSIS leadership on these issues in the years to come. We are delighted that he is joining our team at a critical time for U.S. economic security policy.”

There's no silver bullet for clean energy. We need an all-hands-on-deck approach, writes Scott Nyquist. Photo via Getty Images

Houston expert: When it comes to the future of energy and climate, think 'all of the above'

guest column

People in the energy industry don’t have the Oscars. For us, the big event of the year is CERAWeek — a conference stuffed with CEOs, top policymakers, and environmental and energy wonks held annually in March.

CERAWeek 2022, with the theme“Pace of Change: Energy, Climate, and Innovation," meant the return of in-person activations, panels, and networking. Walking and talking between sessions and around the coffee table, it occurred to me that the unofficial theme of the event was “Maybe now we can find middle ground on energy.” This idea came up time and time again, from all kinds of people.

As with too many other issues, the discussion of the future of US energy has become polarized. On one end of the spectrum are those who want everything renewable and/or electrified by ….. last week, whatever the cost. Their mantra for fossil fuels: “Keep them in the ground.”

On the other end, are those who dismiss climate change, saying we can always adapt and that it doesn’t much matter, anyway. Just keep digging and drilling and mining as we have always done. And in the middle are the great majority of Americans who are not passionate either way, but want to be responsible consumers, and also to be able to visit grandma without breaking the bank.

I believe that the transition toward an energy system that is cleaner and less reliant on fossil fuels is realand will ultimately bring substantial benefits. At the same time, I believe that energy security and economics also matter. At a time when inflation was already running high, paying an average of $4.25 a gallon at the pump is piling pain on tens of millions of US households. Ultimately, over decades, the use of electric vehicles will reduce the need for oil and that lower-emissions sources, including renewables, will provide a larger share of the power supply, which today depends largely on gas and coal. But that moment is not now, or next week. Indeed, fossil fuels continue to account for almost 80 percent of US primary energy consumption, and a similar figure globally.

Here is one way to think about the interplay between the energy transition and energy security: “We need an energy strategy for the future—an all-of-the-above strategy for the 21st century that develops every source of American-made energy.” No, that isn’t some apologist for Big Oil; it was President Obama. In 2014, the Obama White House also noted the role of US domestic oil and gas production in enhancing economic resilience and reducing vulnerability to oil shocks. In short, the White House argued, US oil and gas production can bring real benefits for the country. I think that is still true.

Does that mean throwing in the towel on the energy transition and climate change? Absolutely not. There are a variety of ways to pursue the goal of reducing emissions and eventually getting to net-zero emissions. I’ve touched on many of them in previous posts—including reducing methane emissions,pricing carbon, hydrogen, renewables, electric vehicles, urban planning, carbon capture, and negative emissions technologies. In other words, an “all of the above strategy” makes sense in this regard, too.

I don’t know how, or if, a middle ground can be captured. But from what I heard at CERAWeek last year, from people of otherwise widely divergent views, there just may be momentum to get there. A middle-ground consensus rests on three premises. First, we need fossil fuels for energy security and reliability now and until the time when technologies are in place to secure the energy transition. Second, at the same time, we need to be investing in the energy transition because climate change is real and matters. And third, for sustained and systematic progress, government and industry need to work together.

Or, in a phrase, “all of the above.”

------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New report predicts major data center boom in Texas by 2028

data analysis

Data centers are proving to be a massive economic force in Texas.

For instance, a new report from clean energy company Bloom Energy predicts Texas will see a 142 percent increase in its market share for data centers from 2025 to 2028. That would be the highest increase of any state.

Bloom Energy expects Texas to exceed 40 gigawatts of data-center capacity by 2028, representing a nearly 30 percent share of the U.S. market. A typical AI data center consumes 1 to 2 gigawatts of energy.

“Data center and AI factory developers can’t afford delays,” Natalie Sunderland, Bloom Energy’s chief marketing officer, said in the report. “Our analysis and survey results show that they’re moving into power‑advantaged regions where capacity can be secured faster — and increasingly designing campuses to operate independently of the grid.”

“The surge in AI demand creates a clear opportunity for states that can adapt to support large-scale AI deployments at speed,” Sunderland adds.

Further evidence of the data center explosion in Texas comes from ConstructConnect, a provider of data and software for contractors and manufacturers. ConstructConnect reported that in the 12-month span through November 2025, data-center construction starts in Texas accounted for $11 billion in spending. At $12.5 billion, only Louisiana surpassed the Texas total.

Capital expenses for U.S. data centers were expected to surpass $425 billion last year, according to ratings agency S&P Global.

ConstructConnect also reports that Texas is among five states collectively grabbing 80 percent of potential data center construction starts. Currently, Texas hosts around 400 data centers, with close to 60 of them in the Houston market.

A large pool of data-center construction spending in Texas is flowing from Google, which announced in November that it would earmark $40 billion for new AI data centers in the state.

“Texas leads in AI and tech innovation,” Gov. Greg Abbott proclaimed when the Google investment was unveiled.

Other studies and reports lay out just how much data centers are influencing economic growth in the Lone Star State:

  • A study by Texas Royalty Brokers indicates Texas leads the U.S. with 17 clusters of AI data centers. The study measured the density of AI data centers by counting the number of graphics processing units (GPUs) installed in those clusters. GPUs are specialized chips built to run AI models and perform complex calculations.
  • Citing data from construction consulting company FMI, The Wall Street Journal reported that spending on construction of data centers is expected to rise 23 percent in 2026 compared with last year. Much of that construction spending will happen in Texas. In the 12 months through November 2025, the average data center cost $597 million, according to ConstructConnect.
  • Data published in 2025 by commercial real estate services company Cushman & Wakefield shows three Texas markets — Austin, Dallas and San Antonio — boast the lowest construction costs for data centers among the 19 U.S. markets that were analyzed. The mid-range of costs in that trio of markets is roughly $10.65 million per megawatt. Houston isn’t included in the data.

Although Houston isn’t cited in the Cushman & Wakefield data, it nonetheless is playing a major role in the data-center boom. Houston-area energy giants Chevron and ExxonMobil are chasing opportunities to supply natural gas as a power source for data centers, for example.

“As Houston rapidly evolves into a hub for AI, cloud computing, and data infrastructure, the city is experiencing a surge in data-center investments driven by its unique position at the intersection of energy, technology, and innovation,” says the Greater Houston Partnership.

Houston-based ENGIE to add new wind and solar projects to Texas grid

coming soon

Houston-based ENGIE North America Inc. has expanded its partnership with Los Angeles-based Ares Infrastructure Opportunities to add 730 megawatts of renewable energy projects to the ERCOT grid.

The new projects will include one wind and two solar projects in Texas.

“The continued growth of our relationship with Ares reflects the strength of ENGIE’s portfolio of assets and our track record of delivering, operating and financing growth in the U.S. despite challenging circumstances,” Dave Carroll, CEO and Chief Renewables Officer of ENGIE North America, said in a news release. “The addition of another 730 MW of generation to our existing relationship reflects the commitment both ENGIE and Ares have to meeting growing demand for power in the U.S. and our willingness to invest in meeting those needs.”

ENGIE has more than 11 gigawatts of renewable energy projects in operation or under construction in the U.S. and Canada, and 52.7 gigawatts worldwide. The company is targeting 95 gigawatts by 2030.

ENGIE launched three new community solar farms in Illinois since December, including the 2.5-megawatt Harmony community solar farm in Lena and the Knox 2A and Knox 2B projects in Galesburg.

The company's 600-megawatt Swenson Ranch Solar project near Abilene, Texas, is expected to go online in 2027 and will provide power for Meta, the parent company of social media platform Facebook. Late last year, ENGIE also signed a nine-year renewable energy supply agreement with AstraZeneca to support the pharmaceutical company’s manufacturing operations from its 114-megawatt Tyson Nick Solar Project in Lamar County, Texas.

Houston geothermal company raises $97M Series B

fresh funding

Houston-based geothermal energy startup Sage Geosystems has closed its Series B fundraising round and plans to use the money to launch its first commercial next-generation geothermal power generation facility.

Ormat Technologies and Carbon Direct Capital co-led the $97 million round, according to a press release from Sage. Existing investors Exa, Nabors, alfa8, Arch Meredith, Abilene Partners, Cubit Capital and Ignis H2 Energy also participated, as well as new investors SiteGround Capital and The UC Berkeley Foundation’s Climate Solutions Fund.

The new geothermal power generation facility will be located at one of Ormat Technologies' existing power plants. The Nevada-based company has geothermal power projects in the U.S. and numerous other countries around the world. The facility will use Sage’s proprietary pressure geothermal technology, which extracts geothermal heat energy from hot dry rock, an abundant geothermal resource.

“Pressure geothermal is designed to be commercial, scalable and deployable almost anywhere,” Cindy Taff, CEO of Sage Geosystems, said in the news release. “This Series B allows us to prove that at commercial scale, reflecting strong conviction from partners who understand both the urgency of energy demand and the criticality of firm power.”

Sage reports that partnering with the Ormat facility will allow it to market and scale up its pressure geothermal technology at a faster rate.

“This investment builds on the strong foundation we’ve established through our commercial agreement and reinforces Ormat’s commitment to accelerating geothermal development,” Doron Blachar, CEO of Ormat Technologies, added in the release. “Sage’s technical expertise and innovative approach are well aligned with Ormat’s strategy to move faster from concept to commercialization. We’re pleased to take this natural next step in a partnership we believe strongly in.”

In 2024, Sage agreed to deliver up to 150 megawatts of new geothermal baseload power to Meta, the parent company of Facebook. At the time, the companies reported that the project's first phase would aim to be operating in 2027.

The company also raised a $17 million Series A, led by Chesapeake Energy Corp., in 2024.