seeing gold

Sustainable biotech company to test hydrogen production technology with global chemicals leader

Two Houston companies have partnered up to explore gold hydrogen technology. Photo via cemvita.com

Two Houston-area companies have announced a strategic partnership to test a unique hydrogen production technology.

The Woodlands-based ChampionX Corporation (NASDAQ: CHX) and Gold H2 Inc. entered into the partnership on November 9. GH2, a subsidiary of Houston-based Cemvita, provides tailored subsurface microbiology solutions by harnessing the power of microorganisms to enable in-situ hydrogen production from depleted oil and gas wells.

Created with carbon neutrality, the gold hydrogen costs less to create and is more sustainable than its alternatives. Cemvita, a sustainability-focused biotech company, has already seen success from its technology. After successfully completing a pilot test of gold hydrogen in the oil-rich Permian Basin of West Texas, Cemvita raised an undisclosed amount of funding through its Gold H2 spin-out.

ChampionX, a global equipment and services provider for the oil and gas industry, has a suite of services and chemical technologies for optimizing production for reservoirs.

"Could not have asked for a better partner than ChampionX, Victor Keasler and Deric Bryant to helps us bring the Gold H2 technology to life. They are the industry leader in oilfield chemistry and microbiology and we are beyond excited to have them as a collaborator," Cemvita Co-founder and CEO Moji Karimi writes in a LinkedIn post. "I talk about creating a natural resource company of the future and our work at Gold H2 is a perfect example. To learn from subsurface biology and effectively turn the reservoir into a natural bioreactor and proactively biomanufacture end products of interest, integrating upstream with downstream."

Cemvita has had a flurry of corporate partnership announcements this year. In September, the company announced a 20-year off-take agreement with United to provide up to 50 million gallons of sustainable aviation fuel a year across 20 years.

Trending News

A View From HETI

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

Trending News