Q&A

Houston energy leader on why the industry needs to implement circular economy, other sustainable initiatives

"Our focus on sustainability is the right thing to do for our employees, for our customers, and for our communities." Photo courtesy of EthosEnergy

When Ana Amicarella took the helm of EthosEnergy in 2019, she had no idea of the challenges that awaited her company, the industry, and the world.

But Amicarella, a former synchronized swimmer from Venezuela who competed in the 1984 Summer Olympics who has three decades of leadership experience at energy companies, has what it took to steer the ship in the choppy waters that was the pandemic, the ongoing energy transition, and more.

In a discussion with EnergyCapital, she shares how she navigated that difficult time and how important she feels it is that energy companies are committed to reducing their carbon footprints — especially through tapping into the circular economy.

EnergyCapital: How have you led EthosEnergy through the past few difficult years? What were the company’s biggest challenges and how did you address them?

Ana Amicarella: Growing EthosEnergy into a global powerhouse with hundreds of millions in turnover within nine years was a formidable task. Since our inception in 2014, we've expanded to 94 locations with 4,000 employees, becoming a leading provider of rotating equipment services in the power, oil, and gas sectors. However, when I assumed the role of CEO in December 2019, the company had evolved into a complex, unwieldy structure with missed opportunities and unsustainable overheads, exacerbated by the COVID-19 pandemic.

Despite the pandemic, we were already on the path to transformation. COVID-19 accelerated our OneEthos strategy, focused on simplifying our business, fostering a new culture, and strengthening client relationships. Extensive listening exercises were held with staff and customers in March 2020 that led to a restructuring plan that was swiftly approved by the board. On July 1, 2020, we launched the new structure, emphasizing that this transformation went beyond organizational changes. Our simplified OneEthos plan focuses on core strengths, eliminating unprofitable activities, embracing cultural principles, and maintaining an unwavering commitment to quality and consistency for our customers. We've also shifted our perspective on capital expenditures, aligning them with energy transition goals to become the preferred partner for critical rotating equipment, offering assistance with end-of-life equipment and carbon footprint reduction as our key value proposition.

EC: How is EthosEnergy future-proofing its business amid the energy transition?

AA: We believe we have a moral responsibility to take a leading role in shaping a better future for us and for generations to come – essentially, we are trying to "Turn on Tomorrow." Our focus on sustainability is the right thing to do for our employees, for our customers, and for our communities. I like to say that behind our company’s name is a team of people. Behind our customers’ names are teams of people. Together we all share common communities, a common environment, and a common reliance on transparent, ethical practices.

A few years ago, we introduced a framework to help us build growth, financial sustainability and deliver long-term value. Our aim is to create value and improve our economic, social, and environmental impact by focusing in the following six areas: Policies and Procedures, Diversity Equity and Inclusion, Environmental Footprint, Engineering Solutions, Alliances and Partnerships, and Third-Party Suppliers. As an example, for Environmental Footprint we are implementing programs to install LED lighting in our facilities, implement more robust environmental recycling and waste reduction plans, and identify other energy efficiency programs around the company. From a third-party supplier’s perspective, we are focused on increasing our spend with minority, women, and veteran-owned businesses. In the last two years, we’ve increased spend in those categories by 35 percent in the US alone. And, we are working towards issuing our first sustainability report in the near future.

EC: How does EthosEnergy help customers shrink their carbon footprint and why is that important to you as a business?

AA: Concerns about climate change have started to exert pressure on conventional business models that follow a linear approach of "take, make, dispose" – a system where we acquire new items, use them, and then discard them when they are no longer needed.

A circular economy approach, on the other hand, disconnects economic activities from excessive material and energy consumption by establishing closed-loop systems where waste and carbon-footprint is minimized, and resources are repeatedly used. Even industries traditionally adhering to linear models, like oil and gas and utilities, can incorporate elements of circularity into their operations. EthosEnergy explores the possibilities that circularity offers to companies in the power generation, oil and gas, and industrial sectors, aiming to revitalize and extend the lifespan of existing assets.

To transition from a linear economy to a circular one, we must focus on three key aspects: optimizing product usage, giving priority to renewable inputs, and effectively recovering by-products and waste.

EC: What sort of technology are you tapping into to help achieve these goals?

AA: The adoption of reusing equipment in the energy industry has room for improvement. There's significant potential for reusing rather than disposing of equipment when it nears decommissioning. Our mission is to offer solutions that are economically, socially, and environmentally beneficial, aimed at prolonging the lifespan of existing equipment. EthosEnergy has already developed a range of solutions for life extension and emissions compliance to help existing assets meet critical targets. This has a noteworthy impact on reducing CO2 emissions in two key ways: first, by avoiding the production of new equipment and thus preventing emissions during manufacturing, and second, by deferring or even eliminating the recycling of older assets.

Additionally, there's an opportunity to enhance the environmental performance of existing assets by increasing their efficiency through regeneration and enabling them to operate with lower-carbon alternative fuels like hydrogen. We've actively collaborated with a university in Italy, Politecnico di Torino, on this front, recognizing that partnerships between universities and industries will play a pivotal role in shaping our future.

We firmly believe that greater collaboration and alignment between business, social, and environmental factors are essential for achieving success in these endeavors.

EC: What’s your leadership style and how do you navigate the challenges that come with being a female CEO in a male-dominated industry?

AA: I would best describe my leadership style as inclusive and engaging. I firmly believe in the power of teamwork and fostering a culture where diverse voices are not only heard but valued. My leadership approach is rooted in transparency, open communication, and a commitment to empowering individuals within the organization to contribute their unique perspectives and talents.

In a male-dominated industry, being relentless is a necessity. I approach challenges with unwavering determination and persistence. I use adversity as motivation to push forward and break down barriers. My relentless pursuit of excellence sets an example for my team and reinforces the idea that gender should never limit one's aspirations.

— — —

This conversation has been edited for brevity and clarity.

Trending News

A View From HETI

Musk has vowed to upend another industry. Photo via Getty Images

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”

Trending News