Q&A

Energy transition in Houston is going to 'take time and be hard'

Wogbe Ofori, founder and chief strategist of WRX Companies, joins the Houston Innovators Podcast to discuss hardtech and Houston as an energy transition city. Photo via LinkedIn

The energy transition has momentum, according to Wogbe Ofori. But there's still a ways to go.

Ofori, the founder and chief strategist of WRX Companies, is an adviser to Nauticus Robotics and strategist to Intuitive Machines and Jacobs, he's also served as a mentor across the local innovation community. He's narrowed in on hardtech and has has gotten a front-row seat to observing what's happening in Houston amid the energy transition, as he explains on this week's episode of the Houston Innovators Podcast.

Listen to the episode and read an excerpt below.

EnergyCapital: Looking back on some of the recent trends of the energy transition, what have you observed?

Wogbe Ofori: The energy transition has been something that — through the last hype cycle that started in the second half of 2020 and lasted until the first quarter of 2022 — was part of that momentum along with Web3. Now, the energy transition is continued as Web3 has fallen off a cliff and now been replaced by AI, but the energy transition is continued. Where I think moving into the next major stage where now it’s time for them to actually be proven out. And these things are hard and take time to be proven out and these technologies to mature. Then for the products and services that are derived from them, to really find the right place within the market and the right use cases. The idea that there is some sort of silver bullet — whether it be hydrogen or something else — that's going to solve the problem for all use cases is completely unrealistic. The issue is that a lot of folks especially the big energy players — the O&G majors here — they know that.

EC: So, what does this next stage look like?

WO: Now we're moving into what I think is a really interesting period where it's going to be, “well do we really have the legs for this race?” Because we sprinted, and everybody got really excited. Now you starting to hear, “well you know some investors are a little worried that cleantech 2.0 might suffer some of the same fate as cleantech 1.0.” How do we avoid that? Will investors have the patience to continue to make investments into energy transition plays for the longer term, because we’re going to need that to make these transitions. It's not going to happen overnight.

EC: Where does Houston come in on all this?

WO: Well the other big question that’s being asked around is, “Can Houston actually lead this?” It's difficult for an incumbent to disrupt itself. We’ve been positioning ourselves as moving from the energy capital of the world to the energy transition capital. I'm all for it, and I'm 100 percent behind it. Now we are just at the place where we're really going to start to see the difference between those who were caught up in the excitement of the energy transition, and those who really have the faith to see this thing through. The ones who do have the faith to see this through are going to create some fantastic companies that are going to create real value and that will materially change the way we live. But it’s going to take time and be hard.

Trending News

A View From HETI

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants.

Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team released two significant publications that made significant strides relating to carbon capture processes. The first, published in Nature Communications, introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process. Another, featured on the cover of ES&T Engineering, demonstrated a vanadium redox flow system capable of both capturing carbon and storing renewable energy.

“These publications reflect our group’s commitment to fundamental electrochemical innovation and real-world applicability,” Rahimi said in a news release. “From membraneless systems to scalable flow systems, we’re charting pathways to decarbonize hard-to-abate sectors and support the transition to a low-carbon economy.”

According to the researchers, the “A Membraneless Electrochemically Mediated Amine Regeneration for Carbon Capture” research paper marked the beginning of the team’s first focus. The research examined the replacement of costly ion-exchange membranes with gas diffusion electrodes. They found that the membranes were the most expensive part of the system, and they were also a major cause of performance issues and high maintenance costs.

The researchers achieved more than 90 percent CO2 removal (nearly 50 percent more than traditional approaches) by engineering the gas diffusion electrodes. According to PhD student and co-author of the paper Ahmad Hassan, the capture costs approximately $70 per metric ton of CO2, which is competitive with other innovative scrubbing techniques.

“By removing the membrane and the associated hardware, we’ve streamlined the EMAR workflow and dramatically cut energy use,” Hassan said in the news release. “This opens the door to retrofitting existing industrial exhaust systems with a compact, low-cost carbon capture module.”

The second breakthrough, published by PhD student Mohsen Afshari, displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge. The results suggested that the technology could potentially provide carbon removal and grid balancing when used with intermittent renewables, such as solar or wind power.

“Integrating carbon capture directly into a redox flow battery lets us tackle two challenges in one device,” Afshari said in the release. “Our front-cover feature highlights its potential to smooth out renewable generation while sequestering CO2.”

Trending News