moving in

California SAF co. raises $3M, plans to open Houston lab

Unifuel’s technology consists of a series of chemical reactions that convert various sustainable materials into sustainable aviation fuels. Photo via Unifuel

Armed with a fresh $3 million round of seed funding, Los Altos, California-based Universal Fuel Technologies is establishing a lab in Houston for production of sustainable aviation fuel samples.

TO VC led the round, with participation from Alchemist Accelerator, Claire Technologies, and World Star Aviation.

Unifuel’s Flexiforming technology consists of a series of chemical reactions that convert various sustainable materials — such as ethanol, methanol, and liquified petroleum gas — into high-quality SAF that’s similar in chemical composition to traditional jet fuel.

“Today’s SAF production is challenged by feedstock limitations and expense, which are problems Unifuel’s Flexiforming solves,” Joshua Phitoussi, managing partner at TO VC, says in a news release. “Unifuel has engineered a more efficient SAF production method that dramatically cuts costs while getting the most out of limited resources.”

One of the key benefits of Flexiforming is that it creates the molecules needed for jet engines and other aircraft equipment to run smoothly. The addition of Flexiforming’s SAF allows for a fully synthetic jet fuel that airlines would be able to use without blending with conventional jet fuel once ASTM International (formerly the American Society of Testing and Materials) approves 100% SAF.

“Sustainable aviation depends upon developing SAF that is not only cost-effective but able to work within the aviation industry as it stands today,” says Alexei Beltyukov, CEO of Universal Fuel Technologies. “With Flexiforming, we can give SAF producers the ability to make affordable, high-quality SAF that has the characteristics needed for aircraft performance and the flexibility to scale at their own rate.”

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News