now trending

The importance of energy transition collaborations, UH solar research project, and more top stories

A recap of a panel from FUZE — and more top energy transition articles from this week. Photo courtesy of Digital Wildcatters

Editor's note: It's been a busy news week for energy transition in Houston, and some of this week's headlines resonated with EnergyCapital readers on social media and daily newsletter. Trending news included a recap from a recent energy transition panel, self-driving freight lanes coming soon, and more.

Houston research team develops breakthrough process for light-harvesting crystals in DOE-backed project

Rice University engineers and collaborators developed a technology that converts light into electricity. Photo by Jeff Fitlow/Rice University

A team of Rice researchers have developed a breakthrough synthesis process for developing light-harvesting materials that can be used in solar cells to convert light into electricity.

Detailed in an October study in Nature Synthesis, the new process is able to more closely control the temperature and time of the crystallization process to create 2D halide perovskites with semiconductor layers of “ideal thickness and purity,” according to a release from Rice.

The process, known as kinetically controlled space confinement, was developed by Rice University chemical and biomolecular engineer Aditya Mohite, along with others at Northwestern University, the University of Pennsylvania and the University of Rennes. The research was backed by the Department of Energy, the Army Research Office, the National Science Foundation and a number of other organizations. Read more.

Addressing the need for collaboration in Houston's energy transition

The Houston energy transition ecosystem is primed for collaborative partnerships – but here's what to keep in mind. Photo courtesy of Digital Wildcatters

When it comes to advancing the energy transition in Houston and beyond, experts seem to agree that collaborations between all major stakeholders is extremely important.

In fact, it was so important that it was the first panel of the second day of FUZE, an energy-focused conference put on by Digital Wildcatters. EnergyCapital HTX and InnovationMap were the event's media partners, and I, as editor of these news outlets, moderated the panel about collaborations.

I wanted to take a second to reflect on the conversation I had with the panelists earlier this week, as I believe their input and expertise — from corporate and nonprofit to startup and investing — was extremely valuable to the greater energy transition community. Read more.

Self-driving trucking facility opens in Houston, readies for 2024 launch in Texas

Texas is one step closer to seeing a Houston-to-Dallas driverless truck route on I-45. Photo courtesy of Aurora

Houston is emerging as a major player in the evolution of self-driving freight trucks.

In October, Aurora Innovation opened a more than 90,000-square-foot terminal at a Fallbrook Drive logistics hub in northwest Houston to support the launch of its first “lane” for driverless trucks — a Houston-to-Dallas route on I-45. Aurora opened its Dallas-area terminal in April.

Close to half of truck freight in Texas moves along I-45 between Houston and Dallas. Read more.

Houston VC invests in early stage California biodegradable plastics startup

Algenesis bills its patented Soleic technology as the world’s first renewable, high-performance, fully biodegradable, and backyard-compostable polyurethane made from plants and algae. Photo via AlgenesisMaterials.com

Houston-based venture capital firm First Bight Ventures led a $5 million seed round for Encinitas, California-based startup Algenesis, a developer of biodegradable plastics.

Algenesis bills its patented Soleic technology as the world’s first renewable, high-performance, fully biodegradable, and backyard-compostable polyurethane made from plants and algae. Each year, 25 million tons of hard-to-recycle polyurethane are produced for the footwear, medical, and textile industries. Polyurethane, typically made from petroleum, usually ends up as landfill waste or environmental microplastics.

Algenesis says Soleic can biodegrade in compost within a matter of months and does not contain harmful PFAS chemicals found in other plastics. Read more.

Energy transition in Houston is going to 'take time and be hard'

Wogbe Ofori, founder and chief strategist of WRX Companies, joins the Houston Innovators Podcast to discuss hardtech and Houston as an energy transition city. Photo via LinkedIn

The energy transition has momentum, according to Wogbe Ofori. But there's still a ways to go.

Ofori, the founder and chief strategist of WRX Companies, is an adviser to Nauticus Robotics and strategist to Intuitive Machines and Jacobs, he's also served as a mentor across the local innovation community. He's narrowed in on hardtech and has has gotten a front-row seat to observing what's happening in Houston amid the energy transition, as he explains on this week's episode of the Houston Innovators Podcast. Read more.

Trending News

A View From HETI

A new generation of technology is making it faster, safer, and more cost-effective to identify CUI. Courtesy photo

Corrosion under insulation (CUI) accounts for roughly 60% of pipeline leaks in the U.S. oil and gas sector. Yet many operators still rely on outdated inspection methods that are slow, risky, and economically unsustainable.

This year, widespread budget cuts and layoffs across the sector are forcing refineries to do more with less. Efficiency is no longer a goal; it’s a mandate. The challenge: how to maintain safety and reliability without overextending resources?

Fortunately, a new generation of technologies is gaining traction in the oil and gas industry, offering operators faster, safer, and more cost-effective ways to identify and mitigate CUI.

Hidden cost of corrosion

Corrosion is a pervasive threat, with CUI posing the greatest risk to refinery operations. Insulation conceals damage until it becomes severe, making detection difficult and ultimately leading to failure. NACE International estimates the annual cost of corrosion in the U.S. at $276 billion.

Compounding the issue is aging infrastructure: roughly half of the nation’s 2.6 million miles of pipeline are over 50 years old. Aging infrastructure increases the urgency and the cost of inspections.

So, the question is: Are we at a breaking point or an inflection point? The answer depends largely on how quickly the industry can move beyond inspection methods that no longer match today's operational or economic realities.

Legacy methods such as insulation stripping, scaffolding, and manual NDT are slow, hazardous, and offer incomplete coverage. With maintenance budgets tightening, these methods are no longer viable.

Why traditional inspection falls short

Without question, what worked 50 years ago no longer works today. Traditional inspection methods are slow, siloed, and dangerously incomplete.

Insulation removal:

  • Disruptive and expensive.
  • Labor-intensive and time-consuming, with a high risk of process upsets and insulation damage.
  • Limited coverage. Often targets a small percentage of piping, leaving large areas unchecked.
  • Health risks: Exposes workers to hazardous materials such as asbestos or fiberglass.

Rope access and scaffolding:

  • Safety hazards. Falls from height remain a leading cause of injury.
  • Restricted time and access. Weather, fatigue, and complex layouts limit coverage and effectiveness.
  • High coordination costs. Multiple contractors, complex scheduling, and oversight, which require continuous monitoring, documentation, and compliance assurance across vendors and protocols drive up costs.

Spot checks:

  • Low detection probability. Random sampling often fails to detect localized corrosion.
  • Data gaps. Paper records and inconsistent methods hinder lifecycle asset planning.
  • Reactive, not proactive: Problems are often discovered late after damage has already occurred.

A smarter way forward

While traditional NDT methods for CUI like Pulsed Eddy Current (PEC) and Real-Time Radiography (RTR) remain valuable, the addition of robotic systems, sensors, and AI are transforming CUI inspection.

Robotic systems, sensors, and AI are reshaping how CUI inspections are conducted, reducing reliance on manual labor and enabling broader, data-rich asset visibility for better planning and decision-making.

ARIX Technologies, for example, introduced pipe-climbing robotic systems capable of full-coverage inspections of insulated pipes without the need for insulation removal. Venus, ARIX’s pipe-climbing robot, delivers full 360° CUI data across both vertical and horizontal pipe circuits — without magnets, scaffolding, or insulation removal. It captures high-resolution visuals and Pulsed Eddy Current (PEC) data simultaneously, allowing operators to review inspection video and analyze corrosion insights in one integrated workflow. This streamlines data collection, speeds up analysis, and keeps personnel out of hazardous zones — making inspections faster, safer, and far more actionable.

These integrated technology platforms are driving measurable gains:

  • Autonomous grid scanning: Delivers structured, repeatable coverage across pipe surfaces for greater inspection consistency.
  • Integrated inspection portal: Combines PEC, RTR, and video into a unified 3D visualization, streamlining analysis across inspection teams.
  • Actionable insights: Enables more confident planning and risk forecasting through digital, shareable data—not siloed or static.

Real-world results

Petromax Refining adopted ARIX’s robotic inspection systems to modernize its CUI inspections, and its results were substantial and measurable:

  • Inspection time dropped from nine months to 39 days.
  • Costs were cut by 63% compared to traditional methods.
  • Scaffolding was minimized 99%, reducing hazardous risks and labor demands.
  • Data accuracy improved, supporting more innovative maintenance planning.

Why the time is now

Energy operators face mounting pressure from all sides: aging infrastructure, constrained budgets, rising safety risks, and growing ESG expectations.

In the U.S., downstream operators are increasingly piloting drone and crawler solutions to automate inspection rounds in refineries, tank farms, and pipelines. Over 92% of oil and gas companies report that they are investing in AI or robotic technologies or have plans to invest soon to modernize operations.

The tools are here. The data is here. Smarter inspection is no longer aspirational — it’s operational. The case has been made. Petromax and others are showing what’s possible. Smarter inspection is no longer a leap but a step forward.

---

Tyler Flanagan is director of service & operations at Houston-based ARIX Technologies.


Trending News