take note

Meet TEX-E's new exec, a deadline not to miss, and more Houston energy transition things to know

Houston energy transition folks — here's what to know to start your week. Photo via Getty Images

Editor's note: Start your week off strong with three quick things to catch up on in Houston's energy transition: a roundup of events not to miss, a Houston energy executive to know, and more.

Calling all energy tech startups

The Rice Alliance for Technology and Entrepreneurship, the Houston Energy Transition Initiative (HETI) and TEX-E have opened applications for their Energy Venture Day and Pitch Competition at CERAWeek, set to take place in the Agora program on March 20.

The pitch day will feature more than 40 energy ventures driving efficiency and advancements toward the energy transition showcasing their companies. The fast-paced competition is designed to connect energy startups with venture capitalists, corporate innovation groups, industry leaders, academics and service providers.

Energy ventures for all tracks of the competition are asked to apply online by Feb. 9. Read more.

David Pruner named executive director of Texas Entrepreneurship Exchange for Energy (TEX-E)

David Pruner will lead the Texas Entrepreneurship Exchange for Energy, known as TEX-E, which is comprised of partners including Greentown Labs, MIT’s Martin Trust Center for Entrepreneurship, and universities across Texas. Additionally, Julia Johansson was appointed chief of staff for TEX-E and will oversee operations and administration responsibilities.

“Dave is the ideal leader for TEX-E to build on the great work that’s been done to develop a robust entrepreneurial energy ecosystem across these five impressive universities in Texas and to directly inspire and support university students to pursue entrepreneurial careers that will power our clean energy future,” Greentown Labs CEO and President Kevin Knobloch says in a news release. Read more.

Events not to miss

Put these Houston-area energy-related events on your calendar.

  • Future of Energy Summit is Tuesday, February 6, at AC Hotel by Marriott Houston Downtown. Register.
  • The De Lange Conference, taking place February 9 and 10 at Rice University's Baker Institute for Public Policy, is centered around the theme “Brave New Worlds: Who Decides? Research, Risk and Responsibility” this year. Register.

Trending News

A View From HETI

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

Trending News