New research from Rice and UH has helped boost the lifespan of CO2RR systems, a newer technology used for carbon capture. Photo via htxenergytransition.org

A team of researchers led by professors from two Houston universities has discovered new methods that help stabilize an emerging technique known as carbon dioxide reduction reaction, or CO2RR, that is used for carbon capture and utilization processes.

The team led by Rice University’s Haotian Wang, associate professor in chemical and biomolecular engineering, and Xiaonan Shan, associate professor of electrical and computer engineering at University of Houston, published its findings in a recent edition of the journal Nature Energy.

CO2RR is an emerging carbon capture and utilization technique where electricity and chemical catalysts are used to convert carbon dioxide gas into carbon-containing compounds like alcohols, ethylene, formic acids or carbon monoxide, according to a news release from Rice. The result can be used as fuels, chemicals or as starting materials to produce other compounds.

The technology is used in commercial membrane electrode assembly (MEA) electrolyzers to convert carbon dioxide into valuable compounds, but the technology isn’t perfected. A significant challenge in CO2RR technology has been the accumulation of bicarbonate salt crystals on the backside of the cathode gas diffusion electrode and within the gas flow channels. The salt precipitates block the flow of carbon dioxide gas through the cathode chamber, which reduce the performance and can cause a failure of the electrolyzers.

The goal in the study was to understand why and how bicarbonate salts form during this reaction. The Rice and UH teams worked together using operando Raman spectroscopy, which is a technique that allows researchers to study the structure of materials and any precipitates that adhere to them while the device is functioning.

“By utilizing operando Raman spectroscopy and optical microscopy, we successfully tracked the movement of bicarbonate-containing droplets and identified their migration pattern,” Shan said in the release. “This provided us the information to develop an effective strategy to manage these droplets without interrupting system stability.”

Next, the team worked to prevent the salt crystals from forming. First, they tested lowering the concentration of cations, like sodium or potassium, in the electrolyte to slow down the salt formation. This method proved to be effective.

They also coated the cathode with parylene, a synthetic polymer that repels water, like Teflon, which also notably improved the stability of the electrolyzer and prevented salt accumulation.

“Inspired by the waxy surface of the lotus leaf which causes water droplets to bead up and roll off, carrying off any dirt particles with it and leaving the leaf’s surface clean, we wondered if coating the gas flow channel with a nonstick substance will prevent salt-laden droplets from staying on the surface of the electrodes for too long and, therefore, reduce salt buildup.” Wang said in the release.

According to Wang, these relatively simple discoveries can extend the operational lifespan of CO2RR systems from a few hundred hours to over 1,000 hours.

The findings also have major implications for commercial applications, Shan added.

“This advancement paves the way for longer-lasting and more reliable (CO2RR) systems, making the technology more practical for large-scale chemical manufacturing,” Shan said in the release. “The improvements we developed are crucial for transitioning CO2 electrolysis from laboratory setups to commercial applications for producing sustainable fuels and chemicals.”

University of Houston professor Xiaonan Shan and the rest of his research team are celebrating fresh funding from a federal grant. Photo via UH.edu

Houston scientists land $1M NSF funding for AI-powered clean energy project

A team of scientists from the University of Houston, in collaboration with Howard University in Washington D.C., has received a $1 million award from the National Science Foundation for a project that aims to automate the discovery of new clean-energy catalysts.

The project, dubbed "Multidisciplinary High-Performance Computing and Artificial Intelligence Enabled Catalyst Design for Micro-Plasma Technologies in Clean Energy Transition," aims to use machine learning and AI to improve the efficiency of catalysts in hydrogen generation, carbon capture and energy storage, according to UH.

“This research directly contributes to these global challenges,” Jiefu Chen, the principal investigator of the project and associate professor of electrical and computer engineering, said in a statement. “This interdisciplinary effort ensures comprehensive and innovative solutions to complex problems.”

Chen is joined by Lars Grabow, professor of chemical and biomolecular engineering; Xiaonan Shan, associate professor of electrical and computing engineering; and Xuquing Wu, associate professor of information science technology. Su Yan, an associate professor of electrical engineering and computer science at Howard University, is collaborating on the project.

The University of Houston team: Xiaonan Shan, associate professor electrical and computing engineering, Jiefu Chen, associate professor of electrical and computer engineering, Lars Grabow, professor of chemical and biomolecular engineering, and Xuquing Wu, associate professor of information science technology. Photo via UH.edu

The team will create a robotic synthesis and testing facility that will automate the experimental testing and verification process of the catalyst design process, which traditionally is slow-going. It will implement AI and advanced, unsupervised machine learning techniques, and have a special focus on plasma reactions.

The project has four main focuses, according to UH.

  1. Using machine learning to discover materials for plasma-assisted catalytic reactions
  2. Developing a model to simulate complex interactions to better understand microwave-plasma-assisted heating
  3. Designing catalysts supports for efficient microwave-assisted reactions
  4. Developing a bench scale reactor to demonstrate the efficiency of the catalysts support system

Additionally, the team will put the funding toward the development of a multidisciplinary research and education program that will train students on using machine learning for topics like computational catalysis, applied electromagnetics and material synthesis. The team is also looking to partner with industry on related projects.

“This project will help create a knowledgeable and skilled workforce capable of addressing critical challenges in the clean energy transition,” Grabow added in a statement. “Moreover, this interdisciplinary project is going to be transformative in that it advances insights and knowledge that will lead to tangible economic impact in the not-too-far future.”

This spring, UH launched a new micro-credential course focused on other applications for AI and robotics in the energy industry.

Around the same time, Microsoft's famous renowned co-founder Bill Gates spoke at CERAWeek to a standing-room-only crowd on the future of the industry. Also founder of Breakthrough Energy, Gates addressed the topic of AI.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

CenterPoint gets go-ahead for $2.9B upgrade of Houston grid

grid resiliency

Texas utility regulators have given the green light for Houston-based CenterPoint Energy to spend $2.9 billion on strengthening its Houston-area electric grid to better withstand extreme weather.

The cost of the plan is nearly $3 billion below what CenterPoint initially proposed to the Public Utility Commission of Texas.

In early 2025, CenterPoint unveiled a $5.75 billion plan to upgrade its Houston-area power system from 2026 through 2028. But the price tag dropped to $2.9 billion as part of a legal settlement between CenterPoint and cities in the utility’s service area.

Sometime after the first quarter of next year, CenterPoint customers in the Houston area will pay an extra $1 a month for the next three years to cover costs of the resiliency plan. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

CenterPoint says the plan is part of its “commitment to building the most resilient coastal grid in the country.”

A key to improving CenterPoint’s local grid will be stepping up management of high-risk vegetation (namely trees), which ranks as the leading cause of power outages in the Houston area. CenterPoint says it will “go above and beyond standard vegetation management by implementing an industry-leading three-year trim cycle,” clearing vegetation from thousands of miles of power lines.

The utility company says its plan aims to prevent Houston-area power outages in case of hurricanes, floods, extreme temperatures, tornadoes, wildfires, winter storms, and other extreme weather events.

CenterPoint says the plan will:

  • Improve systemwide resilience by 30 percent
  • Expand the grid’s power-generating capacity. The company expects power demand in the Houston area to grow 2 percent per year for the foreseeable future.
  • Save about $50 million per year on storm cleanup costs
  • Avoid outages for more than 500,000 customers in the event of a disaster like last year’s Hurricane Beryl
  • Provide 130,000 stronger, more storm-resilient utility poles
  • Put more than 50 percent of the power system underground
  • Rebuild or upgrade more than 2,200 transmission towers
  • Modernize 34,500 spans of underground cables

In the Energy Capital of the World, residents “expect and deserve an electric system that is safe, reliable, cost-effective, and resilient when they need it most. We’re determined to deliver just that,” Jason Wells, president and CEO of CenterPoint, said in January.

Solidec partners with Australian company for clean hydrogen peroxide pilot​

rare earth pilot

Solidec has partnered with Australia-based Lynas Rare Earth, an environmentally responsible producer of rare earth oxides and materials, to reduce emissions from hydrogen peroxide production.

The partnership marks a milestone for the Houston-based clean chemical manufacturing startup, as it would allow the company to accelerate the commercialization of its hydrogen peroxide generation technology, according to a news release.

"This collaboration is a major milestone for Solidec and a catalyst for sustainability in rare earths," Yang Xia, co-founder and CTO of Solidec, said in the release. "Solidec's technology can reduce the carbon footprint of hydrogen peroxide production by up to 90%. By combining our generators with the scale of a global leader in rare earths, we can contribute to a more secure, sustainable supply of critical minerals."

Through the partnership, Solidec will launch a pilot program of its autonomous, on-site generators at Lynas's facility in Australia. Solidec's generators extract molecules from water and air and convert them into carbon emission-free chemicals and fuels, like hydrogen peroxide. The generators also eliminate the need for transport, storage and permitting, making for a simpler, more efficient process for producing hydrogen peroxide than the traditional anthraquinone process.

"Hydrogen peroxide is essential to rare earth production, yet centralized manufacturing adds cost and complexity," Ryan DuChanois, co-founder and CEO of Solidec, added in the release. "By generating peroxide directly on-site, we're reinventing the chemical supply chain for efficiency, resilience, and sustainability."

The companies report that the pilot is expected to generate 10 tons of hydrogen peroxide per year.

If successful, the pilot would serve as a model for large-scale deployments of Solidec's generators across Lynas' operations—and would have major implications for the high-performance magnet, electric vehicles, wind turbine, and advanced electronics industries, which rely on rare earth elements.

"This partnership with Solidec is another milestone on the path to achieving our Towards 2030 vision," Luke Darbyshire, general manager of R&I at Lynas, added. "Working with Solidec allows us to establish transformative chemical supply pathways that align with our innovation efforts, while contributing to our broader vision for secure, sustainable rare earth supply chains."

How executive education retains your best employees + drives success

Investing in People

Hiring is tough, but retaining great people is even harder. Ask almost any manager what keeps them up at night, and the answer usually comes back to the same thing: How do we keep our best employees growing here instead of looking elsewhere?

One reliable approach has held up across industries. When people see their employer investing in their development, they’re more likely to stay, contribute, and imagine a future with the organization.

The data backs this up. Employees who take part in ongoing training are far less likely to leave, and the effect is especially strong for younger workers. One national survey found that 86% of millennials would stay with an employer that invests in their development. Companies that build a real learning culture see retention jump by 30-50%. The pattern is consistent: When people can learn and advance, they stay.

The ROI of executive education
Professional development signals value, but it also builds capability. When people have access to structured learning, they become better problem-solvers, more adaptable, and more confident leading through change.

That's the focus of Executive Education at Rice University's Jones Graduate School of Business. The portfolio is built for the realities of modern leadership: AI and digital transformation courses for teams navigating new technologies, and deeper programs in innovation and strategy for leaders sharpening long-term thinking.

“People, managers, professionals, and executives in all functional areas of business can benefit from this program,” notes Jing Zhou, Mary Gibbs Jones Professor of Management and Psychology at Rice. “We teach the fundamental principles of how to drive innovation and broaden the cognitive space.”

That perspective runs through every offering, from the Rice Advanced Management Program to the Leadership Accelerator and Leading Innovation. Each program gives participants practical tools to think strategically, work across teams and make meaningful change inside their organizations.

Building the leadership pipeline
Leadership development isn’t a perk anymore. It’s a strategic need for any organization that wants to grow and stay competitive.

Employers know this — nearly two-thirds say leadership training is essential to their success — yet employees still report feeling stalled. Reports find 74% of employees feel they aren’t reaching their potential because they lacked meaningful growth opportunities.

Rice Business designs its Executive Education programs to address that gap. The Rice Advanced Management Program, for example, supports leaders preparing for C-suite, board, or enterprise-level roles. Its format — two in-person modules separated by several weeks — gives participants space to test ideas at work, return with questions, and build on what they’ve learned. The structure fits demanding executive schedules while creating room for deeper reflection and richer peer connections.

Just as important, the program helps senior leaders align on strategy and culture. Participants develop a shared language and build stronger relationships, which translates into clearer decision-making, better collaboration, and less burnout across teams.

Houston’s advantage
Houston gives Rice Business Executive Education a distinctive edge. The city’s position in energy, healthcare, logistics, and innovation means participants are learning in the middle of a global business ecosystem. That proximity brings a mix of perspectives you don’t get in more siloed markets, and it pushes leaders to apply ideas to real-world problems in real time.

The expertise runs deep on campus, as well. Participants learn from faculty who are shaping conversations in their fields, not just teaching from a playbook. For many organizations, that outside perspective is a meaningful complement to in-house training — a chance to stretch thinking, challenge assumptions, and broaden leadership capacity.

Rice Business offers multiple paths into that experience, from open-enrollment programs like Leading Organizational Change, Executive Leadership for Women, or Driving Growth through AI and Digital Transformation to fully customized corporate partnerships. Across all formats, the focus is the same: education that is practical, relevant, and built for impact.

Investing in retention and results
When organizations make room for real development, the payoff shows up quickly: higher engagement, stronger leadership pipelines, and lower turnover. It also shapes the culture. People are more willing to take risks, ask better questions, and stay curious when they know learning is part of the job.

As Brent Smith, senior associate dean for Executive Education at Rice Business, explains, “There’s a layer of learning in leadership that’s about helping people adopt a leadership identity — to see themselves as the actual leader for their organization. That’s not an easy transition, but it’s the foundation of lasting success.”

For companies that want to build loyalty, deepen leadership capacity, and stay competitive in a fast-changing environment, investing in people isn’t optional. Rice Business Executive Education offers a clear path to do it well. Learn more here.

Check out upcoming programs: