Rice Wind Energy had a strong showing at the DOE's 2025 Collegiate Wind Competition. Photo courtesy Rice University.

The student-led Rice Wind Energy team clinched second place overall at the U.S. Department of Energy’s 2025 Collegiate Wind Competition (CWC), which challenges students nationwide to design and build wind turbines, develop wind energy projects and engage in public outreach to promote renewable energy.

“The Collegiate Wind Competition is such an incredible opportunity for students passionate about sustainability to gain industry-applicable, hands-on experience in the renewable energy space,” senior and team vice president Jason Yang said in a news release.

The event was hosted by the National Renewable Energy Laboratories at the University of Colorado Boulder campus. Over 40 teams entered the competition, with just 12 advancing to the final stage. The competition comprises four core contests: connection creation, turbine design, turbine testing and project development.

Rice Wind Energy had the largest team with 26 students advancing to the final stage of the competition. It picked up a first-place win in the connection creation contest, and also placed third in the project development, fourth in turbine testing and fifth in turbine design contests.

“This accomplishment is a testament to our focus, teamwork and unwavering determination,” senior Esther Fahel, Rice Wind Energy’s 2024-25 president, said in a news release. “It’s a remarkable experience to have watched this team progress from its inception to the competition podium. The passion and drive of Rice students is so palpable.”

In the Connection Creation contest, the team hosted a wind energy panel with Texas Tech University, invited local high school students to campus for educational activities, produced a series of Instagram reels to address wind energy misconceptions and launched its first website.

The team also developed an autonomous wind turbine and floating foundation design that successfully produced over 20 watts of power in the wind tunnel. They were also one of just a few teams to complete the rigorous safety test, which brought their turbine to below 10 percent of its operational speed within 10 seconds of pressing an emergency stop button. It also designed a 450-megawatt floating wind farm located 38 kilometers off the coast of Oregon by using a multi-decision criteria matrix to select the optimal site, and conducted technical modeling.

“I am amazed at the team’s growth in impact and collaboration over the past year,” senior Ava Garrelts, the team’s Connection Creation lead for 2024-25, said in a news release. “It has been incredible to see our members develop their confidence by building tangible skills and lifelong connections. We are all honored to receive recognition for our work, but the entire experience has been just as rewarding.”

Rice faculty and industry sponsors included David Trevas and faculty advisers Gary Woods and Jose Moreto, Knape Associates, Hartzell Air Movement, NextEra Analytics, RWE Clean Energy, H&H Business Development and GE Vernova, Rice’s Oshman Engineering Design Kitchen, George R. Brown School of Engineering and Computing, Rice Engineering Alumni and Rice Center for Engineering Leadership.

The BYU Wind Energy Team took home the overall first-place prize. A team from the University of Texas at Dallas was the only other Texas-based team to make the 12-team finals.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston hub for clean energy startups names global founding partners

green team

EnergyTech Nexus, a Houston-based hub for clean energy startups, announced its coalition of Global Founding Partners last month at its Pilotathon event during Houston Energy and Climate Week.

The group of international companies will contribute financial and technical resources, as well as share their expertise with startup founders, according to a news release from EnergyTech Nexus.

“Our Global Founding Partners represent the highest standards of industrial leadership, technical expertise and commitment to innovation,” Juliana Garaizar, co-founding partner of EnergyTech Nexus, added in the release. “Their collaboration enables us to connect groundbreaking technologies with the resources, infrastructure, and markets needed to achieve global scale.”

Houston-based partners include:

  • Cemvita Inc.
  • Chevron Technology Ventures
  • Collide
  • Greentown Labs
  • Kauel
  • Oxy Technology Ventures
  • Revterra
  • Sunipro

“At Collide, we believe progress happens when the right people, data, and ideas come together. Partnering with EnergyTech Nexus allows us to support innovators with the insights and community they need to accelerate deployment at scale,” Collin McLelland, co-founder and CEO of Collide, a provider of generative artificial intelligence for the energy sector, said in the release.

"Revterra is thrilled to be a founding member of the EnergyTech Nexus community," Ben Jawdat, founder and CEO of kinetic battery technology company Revterra, added. "Building a strong network of collaborators, customers, and investors is critical for any startup — particularly when you're building novel hardware. The Energytech Nexus community has been incredible at bringing all of the right stakeholders together."

Other partners, many of which have a strong presence in Houston, include:

  • BBVA
  • EarthX
  • Endress+Hauser
  • Goodwin
  • Greenbackers Investment Capital
  • ISR Energy
  • Latham & Watkins LLP
  • Ormazabal
  • Repsol
  • STX Next
  • XGS Energy

Jason Ethier, co-founding partner of EnergyTech Nexus, said that partnerships with these companies will be "pivotal" in supporting the organization's community of founders and Houston's broader energy transition sector.

“The Energy and Climate industry deploys over $1.5 trillion in capital every year to meet our growing energy demands. Our global founding partners recognize that this energy must be delivered reliably, cost effectively, and sustainably, and have committed to ensuring that technology developed without our ecosystem can find a path to market through testing and piloting in real-world conditions," Ethier said. "The ecosystem they support here solidifies Houston as the global nexus for the energy transition.”

EnergyTech Nexus also recently announced a "strategic ecosystem partnership" with Greentown Labs, aimed at accelerating growth for clean energy startups. Read more here.

CenterPoint launches $65B capital improvement plan

grid growth

To support rising demand for power, Houston-based utility company CenterPoint Energy has launched a $65 billion, 10-year capital improvement plan.

CenterPoint said that in its four-state service territory — Texas, Indiana, Minnesota and Ohio — the money will go toward building and maintaining a “resilient” electric grid and a safe natural gas system.

In the Houston area, CenterPoint forecasts peak demand for electricity will increase nearly 50 percent, to almost 31 gigawatts, by 2031 and peak demand will climb to almost 42 gigawatts by the middle of the next decade. CenterPoint provides energy to nearly 2.8 million customers in the Houston area.

In addition to the $65 billion capital improvement budget, which is almost 40 percent higher than the 2021 budget, CenterPoint has identified more than $10 billion in investment opportunities that could further improve electric and natural gas service.

“Every investment we make at CenterPoint is in service of our approximately seven million metered customers we have the privilege to serve,” CenterPoint president and CEO Jason Wells said in a news release.

“With our customer-driven yet conservative approach to growth, we continue to see significant potential for even more investment for the benefit of our customers that is not yet reflected in our new plan,” he added.

UH projects propose innovative reuse of wind turbines and more on Gulf Coast

Forward-thinking

Two University of Houston science projects have been selected as finalists for the Gulf Futures Challenge, which will award a total of $50 million to develop ideas that help benefit the Gulf Coast.

Sponsored by the National Academies of Science, Engineering and Medicine’s Gulf Coast Research Program and Lever for Change, the competition is designed to spark innovation around problems in the Gulf Coast, such as rising sea levels, pollution, energy security, and community resiliency. The two UH projects beat out 162 entries from organizations based in Alabama, Florida, Louisiana, Mississippi, and Texas.

“Being named a finalist for this highly competitive grant underscores the University of Houston’s role as a leading research institution committed to addressing the most pressing challenges facing our region,” said Claudia Neuhauser, vice president for research at UH.

“This opportunity affirms the strength of our faculty and researchers and highlights UH’s capacity to deliver innovative solutions that will ensure the long-term stability and resilience of the Gulf Coast.”

One project, spearheaded by the UH Repurposing Offshore Infrastructure for Continued Energy (ROICE) program, is studying ways to use decommissioned oil rig platforms in the Gulf of Mexico as both clean energy hydrogen power generators as well a marine habitats. There are currently thousands of such platforms in the Gulf.

The other project involves the innovative recycling of wind turbines into seawall and coastal habitats. Broken and abandoned wind turbine blades have traditionally been thought to be non-recyclable and end up taking up incredible space in landfills. Headed by a partnership between UH, Tulane University, the University of Texas Health Science Center at Houston, the city of Galveston and other organizations, this initiative could vastly reduce the waste associated with wind farm technology.

wind turbine recycled for Gulf Coast seawall.Wind turbines would be repurposed into seawalls and more. Courtesy rendering

"Coastal communities face escalating threats from climate change — land erosion, structural corrosion, property damage and negative health impacts,” said Gangbing Song, Moores Professor of Mechanical and Aerospace Engineering at UH and the lead investigator for both projects.

“Leveraging the durability and anti-corrosive properties of these of decommissioned wind turbine blades, we will build coastal structures, improve green spaces and advance the resilience and health of Gulf Coast communities through integrated research, education and outreach.”

The two projects have received a development grant of $300,000 as a prize for making it to the finals. When the winner are announced in early 2026, two of the projects will net $20 million each to bring their vision to life, with the rest earning a consolation prize of $875,000, in additional project support.

In the event that UH doesn't grab the grand prize, the school's scientific innovation will earn a guaranteed $1.75 million for the betterment of the Gulf Coast.

---

This article originally appeared on CultureMap.com.