Vibhu Sharma, founder and CEO of InnoVent Renewables, saw a huge opportunity for cleaner tire waste. Photo via LinkedIn

Vibhu Sharma observed a huge sustainability problem within the automotive industry, and he was tired of no one doing anything about it.

"Globally, humans dispose 1 billion tires every year," Sharma says on the Houston Innovators Podcast. "It's a massive environmental and public health problem because these tires can take hundreds of years to break down, and what they start doing is leaking chemicals into the soil."

Today, 98 percent of all tires end up in landfills, Sharma says, and this waste contributes to a multitude of problems — from mosquito and pest infestation to chemical leaks and fire hazards. That's why he founded InnoVent Renewables, a Houston-based company that uses its proprietary continuous pyrolysis technology to convert waste tires into valuable fuels, steel, and chemicals.

While the process of pyrolysis — decomposing materials using high heat — isn't new, InnoVent's process has a potential to be uniquely impactful. As Sharma explains on the show, he's targeting areas with an existing supply of waste tires. The company's first plant — located in Monterrey, Mexico — is expected to go online early in the new year, an impressive accomplishment considering Sharma started his company just over a year ago and bootstrapped the business with only a friends and family round of funding.

"It's about 16 months or so from start to commercial operations, which is phenomenal when you consider what it takes to build and operate a chemical or petrochemical facility," Sharma says.

Currently, with the facility close to operations, Sharma is looking to secure customers for the plant's products — which includes diesel, steel, and carbon black — and he doesn't have to look too far out of the automotive industry for his potential customer base. Additionally, the plant should be net zero by day one, since Sharma says he will be using the output to fuel operations.

While the first facility is in Mexico, Sharma says they are already looking at potential secondary locations with Texas at the top of his list. Houston, where Sharma has worked for 26 years, has been a strategic headquarters for InnoVent.

"When it came to doing the research and development, we were able to work with experts in the Houston and Texas areas to test out our idea and validate it," Sharma says. "One thing that gets under appreciated about Houston is how well it's connected to the rest of the world. There are so many direct connections between Houston and Latin America, as well as Europe, Middle East, and Asia."

"I also find that the Houston ecosystem is very supportive of new companies and helping them grow," he adds.

———

This article originally ran on InnovationMap.

Clockwise from top left: Sean Kelly of Amperon, Dianna Liu of ARIXTechnologies, Matthew Dawson of Elementium Materials, Vibhu Sharma of InnoVent Renewables, Cindy Taff of Sage Geosystems, and Emma Konet of TierraClimate. Photos courtesy

Houston's top energy transition founders explain their biggest challenges

overheard

From finding funding to navigating the pace of traditional oil and gas company tech adoption, energy transition companies face their fair share of challenges.

This year's Houston Innovation Awards finalists in the Energy Transition category explained what their biggest challenge has been and how they've overcome it. See what they said below, and make sure to secure your tickets to the Nov. 14 event to see which of these finalists win the award.

"The evolving nature of the energy industry presents opportunities to solve some of our industry's greatest challenges. At Amperon we help optimize grid reliability and stability with the power of AI demand forecasting." 

Sean Kelly, CEO of Amperon, an AI platform powering the smart grid of the future

"The biggest challenge in leading an energy transition-focused startup has been balancing the urgency for sustainable solutions with the slow pace of change in traditional industries like oil and gas. Many companies are cautious about adopting new technologies, especially when it comes to integrating sustainability initiatives. We overcame this by positioning our solutions not just as environmentally friendly, but as tools that improve safety, efficiency, and cost savings. By aligning our value proposition with their operational goals and demonstrating real, measurable benefits, we were able to gain traction and drive adoption in industries that are traditionally resistant to change." 

— Dianna Liu, CEO of ARIXTechnologies, an integrated robotics and data analytics company that delivers inspection services through its robotics platforms

"Scaling up production of hard tech is a major challenge. Thankfully, we recruited top-notch talent with experience in technology scale-up and chemical processes. In addition, we've begun building partnerships with some of the world's largest chemical manufacturers in our space who are excited to be a part of our journey and could rapidly accelerate our go to market strategy. We have significant demand for our product as early as 2025, so partnering with these companies to scale-up will bring our technology to market years ahead of doing it alone."

— Matthew Dawson, CEO of Elementium Materials, a battery technology with liquid electrolyte solutions

"Our pyrolysis reactor is a proprietary design that was developed during Covid. We ran simulations to prove that it works, but it was not easy to test it in a pilot facility, let alone scaling it up. We managed ... to run our pilot plant studies, while working with them remotely. We proved that our reactor worked and produced high quality products. Later, we built our own pilot plant R&D facility to continue running tests and optimizing the process. Then, there was the challenge of scaling it up to commercial size. ... We put together a task force of four different companies to come together to design and build this complex reactor in record time."

— Vibhu Sharma, CEO of InnoVent Renewables, a startup with proprietary continuous pyrolysis technology that converts waste tires, plastics, and biomass into valuable fuels and chemicals

"Energy storage and geothermal power generation are capital-intensive infrastructure projects, requiring investors with a deep commitment and the patience in terms of years to allow the technology to be developed and proven in the field. One challenge is finding that niche of investors with the vision to join our journey. We have succeeded in raising our $30 million series A with these types of investors, whom we’re confident will continue the journey as we scale." 

— Cindy Taff, CEO of Sage Geosystems, an energy company focused on developing and deploying advanced geothermal technologies to provide reliable power and sustainable energy storage solutions regardless of geography

"The biggest challenge we've faced has been to bring together massive independent power producers on one side who are investing hundreds of millions of dollars into grid infrastructure with multi- national tech giants on the other that don't have experience working much with energy storage. As a startup with only four employees, gaining credibility with these players was critical. We overcame this hurdle by becoming the preeminent thought leader on storage emissions, through publishing white papers, discussing the issues on podcasts, and (more)."

— Emma Konet, CTO of TierraClimate, a software provider that helps grid-scale batteries reduce carbon emissions

Events not to miss, a new app launches for the energy industry, and more things to know this week. Photo via Getty Images

New energy networking app, events you can't miss, and more things to know in Houston this week

Hou knew?

Editor's note: It's a new week — start it strong with three quick things to know in Houston's energy transition ecosystem. Meet the new leaders of ERCOT, an app you probably should download, and events not to miss this week.

Energy networking: There's an app for that

This Houston-based media company launched a networking platform to help solve the energy crisis. Screenshots via apps.apple.com

The Digital Wildcatters have created a platform for individuals to get their questions answered by experts and a space for companies seeking qualified talent. Collide is structured to ignite the next generation of energy innovators, as Collin McLelland, co-founder and CEO of Digital Wildcatters, tells EnergyCapital.

“If you look at what we’ve done historically with Digital Wildcatters, we’ve built an extremely engaged community of energy professionals — it’s a next generation community, very young forward thinking professionals that are working towards solving the world’s energy crisis,” McLelland says.

The roll out of Collide has been intentionally gradual, McLelland says because they want to shape the user experience based on feedback from ongoing focus groups. Currently they have about 1,000 users and are examining how they can make the app valuable to them before providing the platform to a wider audience.

McLelland says there are two major issues within the energy sector that Collide hopes to address — a lack of knowledge about energy verticals and difficulty recruiting talent.

“What we really see with our platform is being able to bring people together where if you want to find a piece of information, you need to find a subject matter expert, or if you want to find your next job, it happens on the Collide platform,” McLelland says. Read the full story.

Upcoming must-attend events to put on your radar

Two events this month the energy transition community needs to know about. Photos by Jeff Fitlow/Rice University

  • September 14-15 — The Ninth Annual Digitalization in Oil & Gas Conference will focus on digitalization, decarbonization, and innovation within the energy industry across five tracks: IoT, blockchain, digital twins, edge computing, and connectivity for upstream, midstream, and downstream operators.
  • September 21 — The Rice Alliance Energy Tech Venture Forum is an opportunity to learn about the latest emerging technologies, meet investors to seek funding, see promising companies, and more.

People to know this week

A quick who's who roundup from last week's EnergyCapital coverage. Photo via Getty Images

Missed some of EnergyCapital's news from last week? Catch up on who to know here.

  • The Electric Reliability Council of Texas, or ERCOT, announced a reorganization amongst its leadership. Effective September 1, four ERCOT leaders have new titles and positions: Woody Rickerson has been named to the newly created position of senior vice president and COO; Kristi Hobbs, who previously served as vice president of corporate strategy and public utility commission relations, will replace Rickerson as vice president of system planning and weatherization and will report directly to Rickerson; Betty Day, vice president of security and compliance and chief compliance officer, has assumed oversight of business continuity; and Rebecca Zerwas will serve as director of state policy and public utility commission relations, board liaison. Read the full story.
  • Launched in 2022, The Texas Southern University Division for Research & Innovation is spearheading the institutions efforts in attaining the highest-tier classification for research in higher education institutions. Michelle Penn-Marshall, who serves as vice president for the division, recently sat down with the Houston Energy Transition Initiative to talk about the university’s mission to become a leader in research and the long-term goals for engaging students in the energy sector and advancing the energy transition. Read the full story.
  • With over a billion cars currently on the road — each with four tires that will eventually end up discarded, one Houstonian is hoping to create the infrastructure to sustainably dispose of tire waste now and into the future. Vibhu Sharma founded InnoVent Renewables to establish production facilities that utilize a proprietary continuous pyrolysis technology that is able to convert waste tires, plastics, and biomass into fuels and chemicals. In a Q&A with EnergyCapital, Sharma explains his plans to sustainably impact the tire waste space and his vision for his company. Read the full story.

Vibhu Sharma founded InnoVent Renewables to make a sustainable impact on tire waste. Photo courtesy

Why this Houston energy innovator created a spin-off company to focus on tire waste

Q&A

With over a billion cars currently on the road — each with four tires that will eventually end up discarded, one Houstonian is hoping to create the infrastructure to sustainably dispose of tire waste now and into the future.

Announced earlier this month, Vibhu Sharma founded InnoVent Renewables to establish production facilities that utilize a proprietary continuous pyrolysis technology that is able to convert waste tires, plastics, and biomass into fuels and chemicals.

In a Q&A with EnergyCapital, Sharma explains his plans to sustainably impact the tire waste space and his vision for his company.

EnergyCapital: Why did you decide to expand the InnoVent brand to focus on renewable energy?

Vibhu Sharma: InnoVent Technology has been developing and implementing projects in renewable energy, chemicals, and oil and gas. Project examples include an EV battery chemical project for a $9 billion chemical company, municipal solid waste (MSW) to biogas, and of course pyrolysis of waste tires, plastics and biomass. Renewable energy is the calling of our time, and with our expertise in this area, we felt strongly that we must do more. With 1 billion waste tires disposed of every year, we wanted to focus on this vast opportunity, which led us to create a spin-off company called InnoVent Renewables, in order to specifically focus on innovative technologies such as pyrolysis of waste tires. We received overwhelming response from our investors and partners, and we're on our way to the first commercial production facility.

EC: Can you describe the process of converting the materials into fuel? How does it work?

VS: At a high level the process involves shredding of tires into small cubes, which are then fed into the main pyrolysis reactor. They're pre-heated enroute to the reactor, using the pyrolysis gas that's generated in the reactor. The reactor operates at a high temperature, and in the absence of oxygen, and decomposes the tires into various components. These are then separated using various techniques. The gases are treated to remove any sulfur, and then used to preheat the shredded tires. The pyrolysis oil (pyoil), which is one of the main products, is condensed out.

The pyoil is further processed to separate out higher value aromatics, and the remaining pyoil is equivalent to off-road diesel or fuel oil, and can be sold directly. The aromatic stream can be further processed or sold directly. It makes a great feed for petrochemical plants, or carbon black plants.

There are two solid products as well. These are recovered carbon black (rCB) and steel wire. Steel wire is separated from the rCB mix and can be sold directly. The rCB is further processed through a series of steps resulting in a high-quality powder which can be used to make tires, making it a completely circular product.

EC: Tell me about your expansion plan. Where are you hoping to grow the company and why in those particular regions?

VS: Our immediate plan is to build and start our commercial production facility in Monterrey, Mexico. Monterrey happens to be home to nearly 50 million waste tires. We are located very close to where the source is. We will set up our initial production train there, and leave room to expand to multiple parallel trains at the same site or nearby sites.

We have our own engineering and operations team in Monterrey, and we have access to modern infrastructure and resources, as this is a fast-growing city of 6 million people. In addition, we have close proximity to Texas for product distribution. Our next step will be to establish production facilities in Texas. We are based in Texas. Texas also has access to at least 50 million tires in landfills all across the state, and the state is taking significant measures to address this issue. We are already engaging with various entities here to plan our expansion site. Meanwhile we have been receiving high levels of interest from counties in Florida, California, as well as international sites in India and the Middle East to set up production facilities there. There are one billion waste tires disposed of every year, it's a huge opportunity. Some of these expansion decisions will depend on support from state governments, access to tires, cost of setting up the facility, etc.

EC: Do you plan on raising investment funding to reach these goals? If not, how will you be funded?

VS: We are fully funded for our first production site in Mexico. Based on our cash flow projections, we should be able to self-fund expansions at that site, and eventually add additional production trains. In order to accelerate our expansion at other sites, we intend to raise funds, with support from different states/counties in the USA where we decide to expand, and with support from investors. We are also open to strategic partners that can team up with us for the expansion both internationally and domestically.

EC:  In the long term, what's the impact you hope to make?

VS: Each production train of 15,000 tons that recycles 1 million passenger tires per year, can reduce CO2 emissions by 80 million pounds per year. Over the next five years, our goal is to get that target to 150,000 tons of recycling, which is 800 million pounds of CO2 emission reduction. That's a good impact to have, and a great way to drive renewable energy forward.

------

This conversation has been edited for brevity and clarity.

Tired of slow tire decomposition? This Houston company has a solution. Photo via InnoVentRenewables.com

New Houston company launches to turn recycled materials into fuel

renewables

Every year, over a billion tires are disposed of globally, and, while in use, tires are used to reach maximum speed on the road, their decomposition times are inordinately slow.

Houston-based InnoVent Renewables has a solution. The company launched this week to drive renewable energy forward with its proprietary continuous pyrolysis technology that is able to convert waste tires, plastics, and biomass into fuels and chemicals.

“We are thrilled to formally launch InnoVent Renewables and plan to ramp-up operations into early 2024," InnoVent Renewables CEO Vibhu Sharma says in a news release. “Our investors, strategic advisors, and management team are all fully committed to our success as we address the global challenge of waste tires. We firmly believe our proven process, deployed at scale globally, will have a huge positive impact on our climate and fill a clear environment need.”

While InnoVent Renewables has only just launched, Sharma has worked in the space for years with his company InnoVent Technology, a technology and consulting company working with clients on turnkey process technology and asset management solutions within the process and manufacturing industries.

During InnoVent's unique material breakdown process, its pyrolysis technology recovers chemicals from the products, and produces high-quality fuels — in in a net-zero capacity. The company's products include renewable pyrolysis oil, or PyOil; aromatics; recovered carbon black, or rCB; and steel wire. PyOil, according to InnoVent's website, can be sold as fuel oil, off-road diesel, or used as a feedstock to crude blending.

"The InnoVent team conducted product quality analysis in conjunction with a world renowned research facility and results were further validated and scaled up in 2022, using comprehensive process simulation software and pre-engineering design work for scale-up," reads the InnoVent website.

Headquartered in Houston, the company has operations in Pune, India, and Monterrey, Mexico, with plans for aggressive growth across North America and Latin America. Specifically, InnoVent is planning to open a commercial production plant in Monterrey next year. Down the road, the company's team hopes to expand in Europe, the Middle East, and Asia-Pacific.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New report predicts major data center boom in Texas by 2028

data analysis

Data centers are proving to be a massive economic force in Texas.

For instance, a new report from clean energy company Bloom Energy predicts Texas will see a 142 percent increase in its market share for data centers from 2025 to 2028. That would be the highest increase of any state.

Bloom Energy expects Texas to exceed 40 gigawatts of data-center capacity by 2028, representing a nearly 30 percent share of the U.S. market. A typical AI data center consumes 1 to 2 gigawatts of energy.

“Data center and AI factory developers can’t afford delays,” Natalie Sunderland, Bloom Energy’s chief marketing officer, said in the report. “Our analysis and survey results show that they’re moving into power‑advantaged regions where capacity can be secured faster — and increasingly designing campuses to operate independently of the grid.”

“The surge in AI demand creates a clear opportunity for states that can adapt to support large-scale AI deployments at speed,” Sunderland adds.

Further evidence of the data center explosion in Texas comes from ConstructConnect, a provider of data and software for contractors and manufacturers. ConstructConnect reported that in the 12-month span through November 2025, data-center construction starts in Texas accounted for $11 billion in spending. At $12.5 billion, only Louisiana surpassed the Texas total.

Capital expenses for U.S. data centers were expected to surpass $425 billion last year, according to ratings agency S&P Global.

ConstructConnect also reports that Texas is among five states collectively grabbing 80 percent of potential data center construction starts. Currently, Texas hosts around 400 data centers, with close to 60 of them in the Houston market.

A large pool of data-center construction spending in Texas is flowing from Google, which announced in November that it would earmark $40 billion for new AI data centers in the state.

“Texas leads in AI and tech innovation,” Gov. Greg Abbott proclaimed when the Google investment was unveiled.

Other studies and reports lay out just how much data centers are influencing economic growth in the Lone Star State:

  • A study by Texas Royalty Brokers indicates Texas leads the U.S. with 17 clusters of AI data centers. The study measured the density of AI data centers by counting the number of graphics processing units (GPUs) installed in those clusters. GPUs are specialized chips built to run AI models and perform complex calculations.
  • Citing data from construction consulting company FMI, The Wall Street Journal reported that spending on construction of data centers is expected to rise 23 percent in 2026 compared with last year. Much of that construction spending will happen in Texas. In the 12 months through November 2025, the average data center cost $597 million, according to ConstructConnect.
  • Data published in 2025 by commercial real estate services company Cushman & Wakefield shows three Texas markets — Austin, Dallas and San Antonio — boast the lowest construction costs for data centers among the 19 U.S. markets that were analyzed. The mid-range of costs in that trio of markets is roughly $10.65 million per megawatt. Houston isn’t included in the data.

Although Houston isn’t cited in the Cushman & Wakefield data, it nonetheless is playing a major role in the data-center boom. Houston-area energy giants Chevron and ExxonMobil are chasing opportunities to supply natural gas as a power source for data centers, for example.

“As Houston rapidly evolves into a hub for AI, cloud computing, and data infrastructure, the city is experiencing a surge in data-center investments driven by its unique position at the intersection of energy, technology, and innovation,” says the Greater Houston Partnership.

Houston-based ENGIE to add new wind and solar projects to Texas grid

coming soon

Houston-based ENGIE North America Inc. has expanded its partnership with Los Angeles-based Ares Infrastructure Opportunities to add 730 megawatts of renewable energy projects to the ERCOT grid.

The new projects will include one wind and two solar projects in Texas.

“The continued growth of our relationship with Ares reflects the strength of ENGIE’s portfolio of assets and our track record of delivering, operating and financing growth in the U.S. despite challenging circumstances,” Dave Carroll, CEO and Chief Renewables Officer of ENGIE North America, said in a news release. “The addition of another 730 MW of generation to our existing relationship reflects the commitment both ENGIE and Ares have to meeting growing demand for power in the U.S. and our willingness to invest in meeting those needs.”

ENGIE has more than 11 gigawatts of renewable energy projects in operation or under construction in the U.S. and Canada, and 52.7 gigawatts worldwide. The company is targeting 95 gigawatts by 2030.

ENGIE launched three new community solar farms in Illinois since December, including the 2.5-megawatt Harmony community solar farm in Lena and the Knox 2A and Knox 2B projects in Galesburg.

The company's 600-megawatt Swenson Ranch Solar project near Abilene, Texas, is expected to go online in 2027 and will provide power for Meta, the parent company of social media platform Facebook. Late last year, ENGIE also signed a nine-year renewable energy supply agreement with AstraZeneca to support the pharmaceutical company’s manufacturing operations from its 114-megawatt Tyson Nick Solar Project in Lamar County, Texas.

Houston geothermal company raises $97M Series B

fresh funding

Houston-based geothermal energy startup Sage Geosystems has closed its Series B fundraising round and plans to use the money to launch its first commercial next-generation geothermal power generation facility.

Ormat Technologies and Carbon Direct Capital co-led the $97 million round, according to a press release from Sage. Existing investors Exa, Nabors, alfa8, Arch Meredith, Abilene Partners, Cubit Capital and Ignis H2 Energy also participated, as well as new investors SiteGround Capital and The UC Berkeley Foundation’s Climate Solutions Fund.

The new geothermal power generation facility will be located at one of Ormat Technologies' existing power plants. The Nevada-based company has geothermal power projects in the U.S. and numerous other countries around the world. The facility will use Sage’s proprietary pressure geothermal technology, which extracts geothermal heat energy from hot dry rock, an abundant geothermal resource.

“Pressure geothermal is designed to be commercial, scalable and deployable almost anywhere,” Cindy Taff, CEO of Sage Geosystems, said in the news release. “This Series B allows us to prove that at commercial scale, reflecting strong conviction from partners who understand both the urgency of energy demand and the criticality of firm power.”

Sage reports that partnering with the Ormat facility will allow it to market and scale up its pressure geothermal technology at a faster rate.

“This investment builds on the strong foundation we’ve established through our commercial agreement and reinforces Ormat’s commitment to accelerating geothermal development,” Doron Blachar, CEO of Ormat Technologies, added in the release. “Sage’s technical expertise and innovative approach are well aligned with Ormat’s strategy to move faster from concept to commercialization. We’re pleased to take this natural next step in a partnership we believe strongly in.”

In 2024, Sage agreed to deliver up to 150 megawatts of new geothermal baseload power to Meta, the parent company of Facebook. At the time, the companies reported that the project's first phase would aim to be operating in 2027.

The company also raised a $17 million Series A, led by Chesapeake Energy Corp., in 2024.