Here are five things to know from CERAWeek this year. Photo courtesy of CERAWeek

The 2024 edition of CERAWeek by S&P Global wrapped up last Friday in Houston, and a handful of themes emerged as topical and disruptive amid the energy transition.

Here are five takeaways from the conference, according to EnergyCapital reporting.

Funding the energy transition continues to be a challenge.

Photo courtesy of CERAWeek

The biggest obstacle to the energy transition is — and might always be — funding it. A panel at Agora on Thursday, March 21, moderated by Barbara Burger set out to discuss the role of venture capital amid the future of energy.

Daniel Goldman, managing partner at Clean Energy Ventures, said that the first plants for these new, revolutionary technologies are going to be more expensive than its subsequent plants.

"But you have to built it," Goldman says. "'First of a kind' can be very different from the end plant, because you need to manage risk. ... But those first plants are going to be quite costly, and you're going to have to recognize that as an investor."

Microsoft and Breakthrough Ventures Founder Bill Gates would address this in his talk later that day, pointing out that traditional infrastructure investors are used to knowing what a plant would cost before its built. But in clean tech, outside of solar and wind, there's too much unknown to give the estimation those investors are looking for.

"Nothing's at the maturity level that you can do that," Gates says.

The DOE's role of de-risking green tech.

Photo courtesy of CERAWeek

The United States Department of Energy had a significant presence at CERAWeek, with Secretary of Energy Jennifer M. Granholm making two major announcements on Monday, March 18, the first day of the conference. One of the announcements was the DOE's latest Pathways to Commercial Liftoff report, which are initiatives established to provide investors with information of how specific energy technologies commercialize and what challenges they each have to overcome as they scale.

"We develop these Liftoff Reports through a combination of modeling and hundreds and hundreds of interviews with people across the whole investment lifecycle—from early-stage capital to commercial banks and institutional investors," Granholm says in her address, announcing geothermal energy as the subject of the ninth report.

Intended to "create a common fact base and a tool for ongoing dialogue with the private sector on the pathways to commercial liftoff," according to the DOE, these reports can be instrumental for enterprises in the field.

A panel at Agora on Thursday, March 21, featuring geothermal energy innovators discussed the impact of the report. Tim Latimer, CEO and founder of Houston-based Fervo Energy, says the report included details from his company's work.

To Latimer, the report showcases geothermal energy's ability to compete from a cost perspective.

"I think geothermal is already winning that cost discussion," Latimer says. "You're talking about $45 per megawatt hour unsubsidized cost for round-the-clock, 24/7 carbon-free energy. I think that's an achievable ambition the DOE set out, and I think it's an unbeatable value proposition.

Hot topic: Geothermal energy.

Photo courtesy of CERAWeek

Geothermal energy was discussed throughout the week following Granholm's address, in part because of its expected cost efficiency, but also because it's a type of energy that should provide a smooth transition from traditional oil and gas.

John Redfern, CEO of Eavor Technologies, global geothermal technology company headquartered in Canada, says on the geothermal panel that the geothermal industry can build off existing infrastructure.

"Most of it is building blocks that we're recycling from the oil industry — resources, people, technologies," Redfern says. "So, it's more about implementing rather than inventing some new, novel product."

Latimer agrees, adding that Fervo "is fully in the deployment phase."

"The breakthrough needed to make geothermal ready for primetime have already happened," Latimer says.

AI is everywhere — especially the energy transition.

Photo courtesy of CERAWeek

The topic of artificial intelligence was everywhere, so much that by Thursday, panelists joked about every discussion including at least one mention of the technology.

Gates was one speaker who addresses the subject, which isn't all too surprising, since Microsoft owns a portion of OpenAI, which created ChatGPT. One thing left to be known is how directly AI will affect the energy transition — and on what timeline.

AI's current applications are within white collar activities, Gates explains, citing writing a regulatory permit or looking at evidence in a lawsuit. He explains that current AI capabilities could continually grow or remain stagnant for a while, he isn't sure.

"The thing that’s daunting is we don’t know how quickly it will improve," he adds.

Gates didn't comment on energy specific AI applications but noted that AI has advanced far past robotics, which would target blue collar roles.

Big tech sees green.

Photo courtesy of CERAWeek

And speaking of AI, big tech companies have been making moves to lower carbon footprints, and that was made clear by the activations at CERAWeek. Microsoft and Amazon each had designated houses at the conference, alongside Oxy, Chevron, Aramco, and other traditional energy players.

At Microsoft, Houston-based Amperon, which recently announced a partnership with the tech company, presented and pitched their company. The Microsoft and Amazon houses showcased each company's low-carbon technologies.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based ENGIE to add new wind and solar projects to Texas grid

coming soon

Houston-based ENGIE North America Inc. has expanded its partnership with Los Angeles-based Ares Infrastructure Opportunities to add 730 megawatts of renewable energy projects to the ERCOT grid.

The new projects will include one wind and two solar projects in Texas.

“The continued growth of our relationship with Ares reflects the strength of ENGIE’s portfolio of assets and our track record of delivering, operating and financing growth in the U.S. despite challenging circumstances,” Dave Carroll, CEO and Chief Renewables Officer of ENGIE North America, said in a news release. “The addition of another 730 MW of generation to our existing relationship reflects the commitment both ENGIE and Ares have to meeting growing demand for power in the U.S. and our willingness to invest in meeting those needs.”

ENGIE has more than 11 gigawatts of renewable energy projects in operation or under construction in the U.S. and Canada, and 52.7 gigawatts worldwide. The company is targeting 95 gigawatts by 2030.

ENGIE launched three new community solar farms in Illinois since December, including the 2.5-megawatt Harmony community solar farm in Lena and the Knox 2A and Knox 2B projects in Galesburg.

The company's 600-megawatt Swenson Ranch Solar project near Abilene, Texas, is expected to go online in 2027 and will provide power for Meta, the parent company of social media platform Facebook. Late last year, ENGIE also signed a nine-year renewable energy supply agreement with AstraZeneca to support the pharmaceutical company’s manufacturing operations from its 114-megawatt Tyson Nick Solar Project in Lamar County, Texas.

Houston geothermal company raises $97M Series B

fresh funding

Houston-based geothermal energy startup Sage Geosystems has closed its Series B fundraising round and plans to use the money to launch its first commercial next-generation geothermal power generation facility.

Ormat Technologies and Carbon Direct Capital co-led the $97 million round, according to a press release from Sage. Existing investors Exa, Nabors, alfa8, Arch Meredith, Abilene Partners, Cubit Capital and Ignis H2 Energy also participated, as well as new investors SiteGround Capital and The UC Berkeley Foundation’s Climate Solutions Fund.

The new geothermal power generation facility will be located at one of Ormat Technologies' existing power plants. The Nevada-based company has geothermal power projects in the U.S. and numerous other countries around the world. The facility will use Sage’s proprietary pressure geothermal technology, which extracts geothermal heat energy from hot dry rock, an abundant geothermal resource.

“Pressure geothermal is designed to be commercial, scalable and deployable almost anywhere,” Cindy Taff, CEO of Sage Geosystems, said in the news release. “This Series B allows us to prove that at commercial scale, reflecting strong conviction from partners who understand both the urgency of energy demand and the criticality of firm power.”

Sage reports that partnering with the Ormat facility will allow it to market and scale up its pressure geothermal technology at a faster rate.

“This investment builds on the strong foundation we’ve established through our commercial agreement and reinforces Ormat’s commitment to accelerating geothermal development,” Doron Blachar, CEO of Ormat Technologies, added in the release. “Sage’s technical expertise and innovative approach are well aligned with Ormat’s strategy to move faster from concept to commercialization. We’re pleased to take this natural next step in a partnership we believe strongly in.”

In 2024, Sage agreed to deliver up to 150 megawatts of new geothermal baseload power to Meta, the parent company of Facebook. At the time, the companies reported that the project's first phase would aim to be operating in 2027.

The company also raised a $17 million Series A, led by Chesapeake Energy Corp., in 2024.

Houston expert discusses the clean energy founder's paradox

Guest Column

Everyone tells you to move fast and break things. In clean energy, moving fast without structural integrity means breaking the only planet we’ve got. This is the founder's paradox: you are building a company in an industry where the stakes are existential, the timelines are glacial, and the capital requires patience.

The myth of the lone genius in a garage doesn’t really apply here. Clean energy startups aren’t just fighting competitors. They are fighting physics, policy, and decades of existing infrastructure. This isn’t an app. You’re building something physical that has to work in the real world. It has to be cheaper, more reliable, and clearly better than fossil fuels. Being “green” alone isn’t enough. Scale is what matters.

Your biggest risks aren’t competitors. They’re interconnection delays, permitting timelines, supply chain fragility, and whether your first customer is willing to underwrite something that hasn’t been done before.

That reality creates a brutal filter. Successful founders in this space need deep technical knowledge and the ability to execute. You need to understand engineering, navigate regulation, and think in terms of markets and risk. You’re not just selling a product. You’re selling a future where your solution becomes the obvious choice. That means connecting short-term financial returns with long-term system change.

The capital is there, but it’s smarter and more demanding. Investors today have PhDs in electrochemistry and grid dynamics. They’ve been burned by promises of miracle materials that never left the lab. They don't fund visions; they fund pathways to impact that can scale and make financial sense. Your roadmap must show not just a brilliant invention, but a clear, believable plan to drive costs down over time.

Capital in this sector isn’t impressed by ambition alone. It wants evidence that risk is being retired in the right order — even if that means slower growth early.

Here’s the upside. The difficulty of clean energy is also its strength. If you succeed, your advantage isn’t just in software or branding. It’s in hardware, supply chains, approvals, and years of hard work that others can’t easily copy. Your real competitors aren’t other startups. They’re inertia and the existing system. Winning here isn’t zero-sum. When one solution scales, it helps the entire market grow.

So, to the founder in the lab, or running field tests at a remote site: your pace will feel slow. The validation cycles are long. But you are building in the physical world. When you succeed, you don’t have an exit. You have a foundation. You don't just have customers; you have converts. And the product you ship doesn't just generate revenue; it creates a legacy.

If your timelines feel uncomfortable compared to software, that’s because you’re operating inside a system designed to resist change. And let’s not forget you are building actual physical products that interact with a complex world. Times are tough. Don’t give up. We need you.

---

Nada Ahmed is the founding partner at Houston-based Energy Tech Nexus.