A new study from the University of Texas at Austin shows that new hydrogen production facilities could account for 2 percent to nearly 7 percent of the state's water demand by 2050. Photo via Getty Images.

Just as the data center industry thrives on electricity, the hydrogen industry thrives on water.

A new study from researchers at the University of Texas at Austin found that by 2050, new hydrogen production facilities could account for 2 percent to nearly 7 percent of water demand in the state. The impact could be especially dramatic along the Gulf Coast, where most of the state’s hydrogen production facilities are already built or are being planned.

The research was published in the journal Sustainability.

The study reported that "most existing and proposed hydrogen production infrastructures are within projected water-strained cities and counties, such as Houston in Harris County and Corpus Christi in Nueces County."

Compared with municipal water supplies or irrigation systems, the hydrogen industry’s demand for water is comparatively small, the study’s lead author, Ning Lin, an energy economist at UT’s Bureau of Economic Geology, said in a news release. But hydrogen-fueled demand could strain communities that already are grappling with current and future water shortages.

“Where you put a project can make a huge difference locally,” Lin says. “With multiple hydrogen facilities planned in water-stressed Gulf Coast counties, this study highlights the urgent need for integrated water and energy planning and provides a solid foundation to help policymakers, industry, and communities make informed decisions about hydrogen and water management.”

To forecast water demand, Lin and her colleagues crunched data from a 2024 National Petroleum Council study that estimated the regional hydrogen demand from 2030 to 2050 based on two energy policy scenarios.

As part of the study, researchers reviewed water use and water quality for various hydrogen production methods that affect whether water remaining from production can be recycled.

“In order to plan for water needs, somebody has to figure out what those future demands might look like, and this paper puts some numbers to (it) that, I think, will be very helpful,” Robert Mace, executive director of the Meadows Center for Water and the Environment at Texas State University, who was not part of the study, added in the release.

A team of Texas researchers has landed a nearly $1 million NSF grant to address rural flood management challenges with community input. Photo via Getty Images.

Houston-led project earns $1 million in federal funding for flood research

team work

A team from Rice University, the University of Texas at Austin and Texas A&M University have been awarded a National Science Foundation grant under the CHIRRP—or Confronting Hazards, Impacts and Risks for a Resilient Planet—program to combat flooding hazards in rural Texas.

The grant totals just under $1 million, according to a CHIRRP abstract.

The team is led by Avantika Gori, assistant professor of civil and environmental engineering at Rice. Other members include Rice’s James Doss-Gollin, Andrew Juan at Texas A&M University and Keri Stephens at UT Austin.

Researchers from Rice’s Severe Storm Prediction, Education and Evacuation from Disasters Center and Ken Kennedy Institute, Texas A&M’s Institute for A Disaster Resilient Texas and the Technology & Information Policy Institute at UT Austin are part of the team as well.

Their proposal includes work that introduces a “stakeholder-centered framework” to help address rural flood management challenges with community input.

“Our goal is to create a flood management approach that truly serves rural communities — one that’s driven by science but centers around the people who are impacted the most,” Gori said in a news release.

The project plans to introduce a performance-based system dynamics framework that integrates hydroclimate variability, hydrology, machine learning, community knowledge, and feedback to give researchers a better understanding of flood risks in rural areas.

The research will be implemented in two rural Texas areas that struggle with constant challenges associated with flooding. The case studies aim to demonstrate how linking global and regional hydroclimate variability with local hazard dynamics can work toward solutions.

“By integrating understanding of the weather dynamics that cause extreme floods, physics-based models of flooding and AI or machine learning tools together with an understanding of each community’s needs and vulnerabilities, we can better predict how different interventions will reduce a community’s risk,” Doss-Gollin said in a news release.

At the same time, the project aims to help communities gain a better understanding of climate science in their terms. The framework will also consider “resilience indicators,” such as business continuity, transportation access and other features that the team says more adequately address the needs of rural communities.

“This work is about more than flood science — it’s also about identifying ways to help communities understand flooding using words that reflect their values and priorities,” said Stephens. “We’re creating tools that empower communities to not only recover from disasters but to thrive long term.”

Houston startup Sage Geosystems released the results of its pilot at a Shell-drilled oil well in the Rio Grande Valley’s Starr County. Photo via sagegeosystems.com

Houston-based geothermal energy startup releases promising results of Texas pilot

hot off the press

As it seeks an additional $30 million in series A funding, Houston startup Sage Geosystems has released promising results from a test of its technology for underground storage of geothermal energy.

Sage says the pilot project, conducted at a Shell-drilled oil well in the Rio Grande Valley’s Starr County, showed the company’s long-term energy storage can compete on a cost basis with lithium-ion battery storage, hydropower storage, and natural gas-powered peaker plants. Peaker plants supply power during periods of peak energy demand.

Furthermore, Sage’s geothermal technology will provide more power capacity at half the cost of other advanced geothermal systems, the company says.

Sage’s storage system retrofits oil and gas wells with the company’s geothermal technology. But the company says its technology “can be deployed virtually anywhere.”

The system relies on mechanical storage instead of battery storage. In mechanical storage, heat, water, or air works in tandem with compressors, turbines, and other machinery. By contrast, battery storage depends on chemistry to get the job done.

“We have cracked the code to provide the perfect complement to renewable energy. … The opportunities for our energy storage to provide power are significant — from remote mining operations to data centers to solving energy poverty in remote locations,” former Shell executive Cindy Taff, CEO of Sage, says in a September 12 news release.

Sage says its storage capacity can be connected to existing power grids, or it can develop microgrids that harness stored energy.

An August 2023 article in The New York Times explained that Sage “is pursuing fracked wells that act as batteries. When there’s surplus electricity on the grid, water gets pumped into the well. In times of need, pressure and heat in the fractures pushes water back up, delivering energy.”

The pilot project, a joint venture between Sage and the Bureau of Economic Ecology at the University of Texas at Austin, was performed as part of a feasibility study financed by the Air Force. Now that the test results are in, Sage plans to build a prototype geothermal project at the Air Force’s Ellington Field Joint Reserve Base in Houston.

Sage says another feasibility study is underway in the Middle East in partnership with an unnamed oil and gas company.

Founded in 2020, Sage plans to raise another $30 million to accompany its previous series A funding.

The Virya climate fund and Houston-based drilling contractor Nabors Industries helped finance the pilot project in Starr County.

Last year, Sage announced it received an undisclosed amount of equity from Houston-based Ignis H2 Energy, a geothermal exploration and development company, and Dutch energy company Geolog International. Also last year, Sage said Nabors and Virya had teamed up for a $12 million investment in the startup.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Hazardous waste company with Houston presence to make $3B acquisition

big deal

Veolia, a Boston-based company with major operations in Texas, is purchasing hazardous-waste company Clean Earth from Enviri as part of a $3 billion deal.

Veolia is a private water operator, technology provider and hazardous waste and pollution treatment company that operates a large hazardous waste treatment and incineration facility in Port Arthur. Hazardous waste treatment is a growing sector as the clean energy, semiconductor manufacturing, healthcare and pharmaceutical industries generate high levels of waste that need to be handled safely.

Acquiring Clean Earth’s 82 facilities, which include 19 EPA-permitted sites, will expand Veolia’s reach into 10 new states and will position the company as the second-largest hazardous waste operator in the U.S., according to a news release. The deal is Veolia’s sixth and largest North American acquisition of 2025.

“(The acquisition) allows us to unlock the full value potential of our U.S. hazardous waste activities and to double our size on this critical, fast-growing sector, creating a No. 2 player,” Estelle Brachlianoff, CEO of Veolia, said in a news release. “We reinforce our global capacities in hazardous waste and further increase our international footprint.”

Veolia’s Port Arthur facility specializes in servicing generators with large-volume waste treatment requirements.

The transaction is expected to close mid-2026. Veolia hopes the increased exposure into industries such as retail and healthcare will help to offer a full range of environmental services across the U.S.

“This continued transformation of our portfolio enhances the growth profile and strength of our group, uniquely positioned to tackle the sustained demand for environmental security,” Brachlianoff added in the release.

Reliant partners to expand Texas virtual power plant and home battery use

energy incentives

Houston’s Reliant and San Francisco tech company GoodLeap are teaming up to bolster residential battery participation and accelerate the growth of NRG’s virtual power plant (VPP) network in Texas.

Through the new partnership, eligible Reliant customers can either lease a battery or enter into a power purchase agreement with GoodLeap through its GoodGrid program, which incentivises users by offering monthly performance-based rewards for contributing stored power to the grid. Through the Reliant GoodLeap VPP Battery Program, customers will start earning $40 per month in rewards from GoodLeap.

“These incentives highlight our commitment to making homeowner battery adoption more accessible, effectively offsetting the cost of the battery and making the upgrade a no-cost addition to their homes,” Dan Lotano, COO at GoodLeap, said in a news release.“We’re proud to work with NRG to unlock the next frontier in distributed energy in Texas. This marks an important step in GoodLeap reaching our nationwide goal of 1.5 GW of managed distributed energy over the next five years.”

Other features of the program include power outage plans, with battery reserves set aside for outage events. The plan also intelligently manages the battery without homeowner interaction.

The partnership comes as Reliant’s parent company, NRG, continues to scale its VPP program. Last year, NRG partnered with California-based Renew Home to distribute hundreds of thousands of VPP-enabled smart thermostats by 2035 in an effort to help households manage and lower their energy costs.

“We started building our VPP with smart thermostats across Texas, and now this partnership with GoodLeap brings home battery storage into our platform,” Mark Parsons, senior vice president and head of Texas energy at NRG, said in a the release. “Each time we add new devices, we’re enabling Texans to unlock new value from their homes, earn rewards and help build a more resilient grid for everyone. This is about giving customers the opportunity to actively participate in the energy transition and receive tangible benefits for themselves and their communities.

How Corrolytics is tackling industrial corrosion and cutting emissions

now streaming

Corrosion is not something most people think about, but for Houston's industrial backbone pipelines, refineries, chemical plants, and water infrastructure, it is a silent and costly threat. Replacing damaged steel and overusing chemicals adds hundreds of millions of tons of carbon emissions every year. Despite the scale of the problem, corrosion detection has barely changed in decades.

In a recent episode of the Energy Tech Startups Podcast, Anwar Sadek, founder and CEO of Corrolytics, explained why the traditional approach is not working and how his team is delivering real-time visibility into one of the most overlooked challenges in the energy transition.

From Lab Insight to Industrial Breakthrough

Anwar began as a researcher studying how metals degrade and how microbes accelerate corrosion. He quickly noticed a major gap. Companies could detect the presence of microorganisms, but they could not tell whether those microbes were actually causing corrosion or how quickly the damage was happening. Most tests required shipping samples to a lab and waiting months for results, long after conditions inside the asset had changed.

That gap inspired Corrolytics' breakthrough. The company developed a portable, real-time electrochemical test that measures microbial corrosion activity directly from fluid samples. No invasive probes. No complex lab work. Just the immediate data operators can act on.

“It is like switching from film to digital photography,” Anwar says. “What used to take months now takes a couple of hours.”

Why Corrosion Matters in Houston's Energy Transition

Houston's energy transition is a blend of innovation and practicality. While the world builds new low-carbon systems, the region still depends on existing industrial infrastructure. Keeping those assets safe, efficient, and emission-conscious is essential.

This is where Corrolytics fits in. Every leak prevented, every pipeline protected, and every unnecessary gallon of biocide avoided reduces emissions and improves operational safety. The company is already seeing interest across oil and gas, petrochemicals, water and wastewater treatment, HVAC, industrial cooling, and biofuels. If fluids move through metal, microbial corrosion can occur, and Corrolytics can detect it.

Because microbes evolve quickly, slow testing methods simply cannot keep up. “By the time a company gets lab results, the environment has changed completely,” Anwar explains. “You cannot manage what you cannot measure.”

A Scientist Steps Into the CEO Role

Anwar did not plan to become a CEO. But through the National Science Foundation's ICorps program, he interviewed more than 300 industry stakeholders. Over 95 percent cited microbial corrosion as a major issue with no effective tool to address it. That validation pushed him to transform his research into a product.

Since then, Corrolytics has moved from prototype to real-world pilots in Brazil and Houston, with early partners already using the technology and some preparing to invest. Along the way, Anwar learned to lead teams, speak the language of industry, and guide the company through challenges. “When things go wrong, and they do, it is the CEO's job to steady the team,” he says.

Why Houston

Relocating to Houston accelerated everything. Customers, partners, advisors, and manufacturing talent are all here. For industrial and energy tech startups, Houston offers an ecosystem built for scale.

What's Next

Corrolytics is preparing for broader pilots, commercial partnerships, and team growth as it continues its fundraising efforts. For anyone focused on asset integrity, emissions reduction, or industrial innovation, this is a company to watch.

Listen to the full conversation with Anwar Sadek on the Energy Tech Startups Podcast to learn more:

---

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.