One of the biggest obstacles to Texas' net-zero goals is its transportation sector, according to Houston research. Photo via UH.edu

A new report found that one of Texas' biggest roadblocks with reducing emissions is its transportation sector.

In its white paper series, the University of Houston's energy researchers found that — unless something changes — the Lone Star State is not likely to hit its carbon neutrality goals by 2050 within the transportation sector.

“What would it take to make the Texas transportation sector net zero by 2050?” Ramanan Krishnamoorti, UH vice president for energy and innovation, says in a news release. “The answer is a miracle, policy interventions that start as soon as possible, and somewhere between 30 to 50 billion dollars of public money between now and 2050 and at least an equal match from the private sector.”

According to the Net Zero in Texas: The Role of Transportation report, over 230 million metric tons of carbon dioxide gas is released from Texas roads each year. By 2050, estimates show that the remaining gasoline and diesel vehicles on the road will still be contributing about 40 million metric tons of emissions. Krishnamoorti collaborated with UH Energy researcher Aparajita Datta on a white paper.

“The future is crucial not only for Texas, where carbon emissions hinge on transportation solutions but also for our nation. Emissions transcend state lines and considering the size of Texas, its growing population and strong industry, the impact is significant,” Krishnamoorti adds.

Some of the challenges the state faces, per the report, hinge on electric vehicle adoption, which has been slow for a variety of reasons. One is the lack of EV production materials, such as lithium, cobalt, copper, manganese and graphite, due to increased demand, which is slated to be increased by 140 to 500 percent.

The EV workforce development also poses a challenge. Right now, hourly wages in the traditional auto sector range from $26 to $60, but most jobs in the EV industry, which are not unionized, range from $17 to $21 per hour.

The call for EV infrastructure is also estimated to be high. Per a news release about the report, "the change will require an annual expenditure of $250 million to $640 million for Level-2 (L2) charging stations and between $500 million and $1.3 billion for DC Fast Charging (DCFC) stations in 2040."

The transition will include an addition of 40,000 and 180,000 jobs in Texas between now and 2050, as well as an estimated $104 billion addition in public health benefits for Texans – fewer deaths, fewer asthma attacks and fewer sick days, according to the study.

“It is evident that decarbonizing Texas’ transportation sector will be a significant challenge and relying solely on consumer behavior to change is unrealistic,” Krishnamoorti says in the release. “We need robust policies to drive the state’s transportation electrification. Let’s acknowledge the journey ahead; federal mandates alone will not guide us to net zero by 2050. Texas needs to act now.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH launches latest micro-credential program focused on energy risks

coming soon

UH Energy at the University of Houston will launch a new micro-credential program this fall focused on risks associated with today's changing energy landscape.

The new self-paced, hybrid program, known as Managing Non-Technical Risks in Energy, is geared towards energy professionals and those who aspire to work in the industry. Enrollment must be completed by Sept. 15 to participate.

According to UH, it will equip participants with "tools, strategies, and real-world insights needed to lead confidently" as they face pressure to meet increased energy demand while also operating under sustainable guidelines.

The program will be led by expert instructors, including:


  • Suryanarayanan Radhakrishnan, Managing Director of UH Energy
  • Amy Mifflin, Principal Consultant and Partner at Sustrio Inc.
  • Chris Angelides, Honorary Consul of The Republic of Cyprus to Texas, Managing Director at Ernst & Young LLP
  • Carolina Ortega, Vice President, Sustainability and Communications at Milestone Environmental Services
  • Krish (Ravi) Ravishankar, Senior Director ESG Analytics & Reporting, Sustainability, Worldwide Environmental Affairs at Oxy

Participants can earn up to three "badges" through the program. Each badge consists of two modules, which can be completed virtually and take about 10 hours to complete over four weeks.

Each module will also include one in-person engagement session that will last about two hours.

The three badges include:


  • Badge 1: Managing Environmental and Social Risks and Impacts
  • Badge 2: Frameworks, Standards, and Implementation
  • Badge 3: Advanced Applications

Badges can be earned individually or as a series of three, and participants must complete assessments to earn each badge.

Badge 1 Module 1 will start on Sept. 15, followed by Badge 1 Module 2 on Oct. 20. Find more information here.

Expert on powering Texas: The promise and challenges of renewable energy

Guest Column

Texas leads the nation in wind and solar energy, but that leadership is being tested as a surge in project cancellations raises new concerns about the future of renewables in the state.

While Texas clean energy has grown significantly in recent years, solar and wind often fall short of meeting peak electricity demand. As extreme weather, rising demand, and project cancellations strain the grid, Texas must confront the growing gap between renewable potential and real-time reliability.

Solar and Wind Energy

Solar generation in the Lone Star State has grown substantially over the past decade. The Texas solar industry is estimated to employ over 12,000 Texans and is contributing billions in local tax revenue and landowner income, and solar and storage are the largest sources of new energy on the Texas grid.

With a significant number of sunny days, Texas’ geography also enables it to be among the states with the greatest energy potential for solar power generation. Further moving to advance the use of solar energy generation, the 89th Texas legislature passed SB 1202 which accelerates the permitting process for home solar and energy storage installations. SB 1202 empowers homeowners to strengthen their own energy security and supports greater grid resilience across the state.

Texas has also led the United States in wind energy production for more than 17 years, with 239 wind-related projects and over 15,300 wind turbines, which is more than any other state. The economic impact of wind energy in Texas is substantial, with the industry contributing $1.7 billion a year to the state’s gross domestic product. With wind electric power generation jobs offering an average annual wage of $109,826, the growing sector provides lucrative employment opportunities.

However, solar and wind currently struggle to meet Texas’ peak electricity demand from 5 pm to 7 pm — a time when millions of residents return home, temperatures remain high and air conditioner use surges. Solar generation begins to decline just as demand ramps up, and wind production is often inconsistent during these hours. Without sufficient long-duration storage or dispatchable backup power, this mismatch between supply and demand presents a significant reliability risk — one that becomes especially urgent during heat waves and extreme weather events, as seen during ERCOT conservation alerts.

Geothermal Energy

Geothermal energy uses heat from beneath the Earth’s surface to provide reliable, low-emission power with minimal land use and no fuel transport. Though it currently supplies a small share of energy, Texas is emerging as a leader in its development, supported by state leaders, industry, and environmentalists. During the 89th legislative session, Texas passed HB 3240 to create a Geothermal Energy Production Policy Council, set to begin work on September 1, 2025.

In 2024, Sage Geosystems was selected to develop geothermal projects at the Naval Air Station in Corpus Christi, expanding its work with the Department of Defense. In partnership with the Environmental Security Technology Certification Program, Sage is using its proprietary Geopressured Geothermal Systems technology to evaluate the potential for geothermal to be a source of clean and consistent energy at the base.

One limitation of geothermal energy is location. Deep drilling is costly, and areas with high water tables, like some coastal regions, may not be viable.

Hydroelectric Energy

While hydropower plays a minor role in Texas’ energy mix, it is still an essential energy source. Its output depends on water availability, which can be affected by seasonal and long-term changes like droughts.

Texas has 26 hydropower plants with a total capacity of nearly 738 megawatts, serving about 2.9 million people as of 2019. Harris County holds 43% of all hydropower generation jobs in the state, and in 2021, hydroelectric power generation contributed $700 million to Texas’ gross domestic product.

Federal funding is helping expand hydropower in Texas. The Southwestern Power Administration has committed about $103 million to support infrastructure, including $32 million for upgrades to Central Texas’s Whitney Dam. The 2021 Inflation Reduction Act added $369 billion in tax credits for clean energy, supporting dam retrofits nationwide. In 2022, the Department of Energy launched over $28 million in new funding through the Infrastructure Law to help meet national clean energy goals by 2035 and carbon neutrality by 2050.

Tidal Energy

Driven by the moon and sun, tidal energy is predictable but limited to coastal areas with strong tides. Although Texas has modest tidal potential, research is ongoing to optimize it. Texas A&M University is developing a floating test platform for hybrid renewable systems, integrating tidal, wave, wind, and solar energy. In addition, St. Mary’s University in San Antonio is prototyping small-scale tidal turbines using 3D printing technology.

While commercial tidal power remains in the research phase, the state’s offshore capabilities, engineering talent, and growing university-led innovation could make it a player in hybrid marine renewable systems. Floating platforms that integrate wave, tide, solar, and wind offer a compelling vision for offshore power generation suited to Texas’ unique coastal conditions.

Biomass Energy

Biomass energy is the largest renewable source worldwide, providing 55% of renewables and over 6% of global energy. While reliable, it can be less efficient, sometimes using more energy to burn the organic matter than it produces, and demand may exceed supply.

In Texas, biomass is a nominal part of the state’s energy portfolio. However, substantial research is being conducted by Texas A&M University to attempt to convert algae and food waste into a cost-efficient source of biomass material. In addition, UK-based biomass and renewable energy company Drax opened its North American headquarters in Houston, which created more than 100 new jobs in Texas’ renewable energy industry.

It’s clear that renewable energy is playing an increasingly important role in shaping Texas’ energy future. But the road ahead demands a realistic view: while these sources can reduce emissions and diversify our generation mix, they do not yet solve for peak load reliability — especially during the critical 5 pm to 7 pm window when grid stress is highest.

Meeting that challenge will require not just investment in renewables, but also innovation in grid-scale storage, flexible generation, market reform and consumer programs. A diversified, resilient energy portfolio — one that includes renewables and reliable dispatchable sources — will be the key to ensuring that Texas remains powered, prepared and prosperous for generations to come.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

Shell to shut down Volta EV charging business with 2,000 stations

pulling the plug

A little over two years after buying it for $169 million, Houston-based Shell USA is shutting down its Volta C electric vehicle charging business.

Shell confirmed to AdExchanger that it will dismantle Volta’s network of more than 2,000 EV charging stations this year. A Shell spokesperson said the energy giant is turning its attention to high-speed public charging stations at Shell-branded sites like gas stations and standalone EV hubs.

Around the world, Shell operates more than 70,000 public EV charging stations. In 2024, the company said it was aiming for a global total of about 200,000 charging stations by 2030.

When Shell announced in March 2023 that it had completed its acquisition of Volta, the energy company said it was gaining an EV charging network with more than 3,000 charging stations at places such as shopping centers, grocery stores and pharmacies.

Shell had said that although Volta’s revenue came from advertising on screens at EV charging stations, it planned to increase the number of charging stations that required motorists to pay for power.

Shell explored a sale of the Volta business earlier this year but didn’t find a buyer, according to AdExchanger.