Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Geothermal energy startup's $600M deal fuels surge in Houston VC funding

by the numbers

The venture capital haul for Houston-area startups jumped 23 percent from 2023 to 2024, according to the latest PitchBook-NVCA Venture Monitor.

The fundraising total for startups in the region climbed from $1.49 billion in 2023 to $1.83 billion in 2024, PitchBook-NVCA Venture Monitor data shows.

Roughly half of the 2024 sum, $914.3 million, came in the fourth quarter. By comparison, Houston-area startups collected $291.3 million in VC during the fourth quarter of 2023.

Among the Houston-area startups contributing to the impressive VC total in the fourth quarter of 2024 was geothermal energy startup Fervo Energy. PitchBook attributes $634 million in fourth-quarter VC to Fervo, with fulfillment services company Cart.com at $50 million, and chemical manufacturing platform Mstack and superconducting wire manufacturer MetOx International at $40 million each.

Across the country, VC deals total $209 billion in 2024, compared with $162.2 billion in 2023. Nearly half (46 percent) of all VC funding in North America last year went to AI startups, PitchBook says. PitchBook’s lead VC analyst for the U.S., Kyle Stanford, says that AI “continues to be the story of the market.”

PitchBook forecasts a “moderately positive” 2025 for venture capital in the U.S.

“That does not mean that challenges are gone. Flat and down rounds will likely continue at higher paces than the market is accustomed to. More companies will likely shut down or fall out of the venture funding cycle,” says PitchBook. “However, both of those expectations are holdovers from 2021.”

--

This story originally appeared on our sister site, InnovationMap.com.

Houston researchers harness dialysis for new wastewater treatment process

waste not

By employing medical field technology dialysis, researchers at Rice University and the Guangdong University of Technology in China uncovered a new way to treat high-salinity organic wastewater.

In the medical field, dialysis uses a machine called a dialyzer to filter waste and excess fluid from the blood. In a study published in Nature Water, Rice’s team found that mimicking dialysis can separate salts from organic substances with minimal dilution of the wastewater, addressing some of the limitations of previous methods.

The researchers say this has the potential to lower costs, recover valuable resources across a range of industrial sectors and reduce environmental impacts.

“Traditional methods often demand a lot of energy and require repeated dilutions,” Yuanmiaoliang “Selina” Chen, a co-first author and postdoctoral associate in Elimelech’s lab at Rice, said in a news release. “Dialysis eliminates many of these pain points, reducing water consumption and operational overheads.”

Various industries generate high-salinity organic wastewater, including petrochemical, pharmaceutical and textile manufacturing. The wastewater’s high salt and organic content can present challenges for existing treatment processes. Biological and advanced oxidation treatments become less effective with higher salinity levels. Thermal methods are considered “energy intensive” and susceptible to corrosion.

Ultimately, the researchers found that dialysis effectively removed salt from water without requiring large amounts of fresh water. This process allows salts to move into the dialysate stream while keeping most organic compounds in the original solution. Because dialysis relies on diffusion instead of pressure, salts and organics cross the membrane at different speeds, making the separation method more efficient.

“Dialysis was astonishingly effective in separating the salts from the organics in our trials,” Menachem Elimelech, a corresponding author on the study and professor of civil and environmental engineering and chemical and biomolecular engineering at Rice, said in a news release. “It’s an exciting discovery with the potential to redefine how we handle some of our most intractable wastewater challenges.”

Virtual power plant from Houston-area company debuts at CES

Powering Up

Brookshire, Texas-based decentralized energy solution company AISPEX Inc. debuted its virtual power plant (VPP) platform, known as EnerVision, earlier this month at CES in Las Vegas.

EnerVision offers energy efficiency, savings and performance for residential, commercial and industrial users by combining state-of-the-art hardware with an AI-powered cloud platform. The VPP technology enables users to sell excess energy back to the grid during demand peaks.

AISPEX, or Advanced Integrated Systems for Power Exchange, has evolved from an EV charging solutions company into an energy systems innovator since it was founded in 2018. It focuses on integrating solar energy and decentralized systems to overcome grid limitations, reduce upgrade costs and accelerate electrification.

Regarding grid issues, the company hopes by leveraging decentralized solar power and Battery Energy Storage Systems (BESS), EnerVision can help bring energy generation closer to consumption, which can ease grid strain and enhance stability. EnerVision plans to do this by addressing “aging infrastructure, grid congestion, increasing electrification and the need for resilience against extreme weather and cyber threats,” according to the company.

One of the company's latest VPP products is SuperHub, which is an all-in-one charging station designed to combine components like solar panels, energy storage systems, fast EV chargers, mobile EV chargers and LCD display screens, into a unified, efficient solution.

“It supports clean energy generation and storage but also ensures seamless charging for electric vehicles while providing opportunities for communication or advertising through its built-in displays,” says Vivian Nie, a representative from AISPEX.

Also at CES, AISPEX displayed its REP Services, which offer flexible pricing, peak load management, and renewable energy options for end-to-end solutions, and its Integrated Systems, which combine solar power, battery storage, EV charging and LCD displays.

“We had the opportunity to meet new partners, reconnect with so many old friends, and dive into discussions about the future of e-mobility and energy solutions,” CEO Paul Nie said on LinkedIn.

In 2024, AISPEX installed its DC Fast chargers at two California Volkswagen locations.