Houston artists have created unique carbon-absorbing art. "Future's Past" by Emily Ding in partnership with UXD tells the story of the Mellie Esperson building. Photo courtesy of Dario DeLeon

Anthony Rose, the CEO of creative agency United By Design, is on a mission to brighten Houston’s urban spaces and improve the city’s air quality one carbon-absorbing mural at a time.

Rose originally founded United By Design, or UXD, in 2019 to connect muralists like himself and commercial businesses seeking to beautify their spaces and form brand identities. After creating vibrant murals for Lockhart Elementary School, the Houston Astros, and Smoothie King, Rose expanded UXD’s vision to include environmental sustainability in their artistic collaborations in 2022.

“This city’s vibrant art scene and growing focus on sustainability makes it an ideal location for our projects,” Rose says. “We’re not just creating eco-friendly murals, we’re reimagining how art can actively contribute to environmental solutions.”

In search of ecologically-conscious paints, Rose formed a partnership with Spain-based, natural paint company Graphenstone. Rose says he was drawn to the company’s eponymous Graphenstone coating because of its nontoxic ingredients and exclusively uses the product for UXD’s carbon-absorbing murals.

For 713 Day, UXD created carbon-absorbing mural "(HUE)STON HARMONY" in collaboration with Downtown Houston+ and local artist David Maldonado. Photo courtesy of Egidio Narvaez

The Graphenstone coating consists of a limestone base which goes through a process called photocatalysis, during which carbon dioxide from the atmosphere is absorbed into the surface, and is then sealed in with graphene, a thin layer of carbon atoms. The murals absorb carbon dioxide throughout the coat’s drying process which typically takes 30 days.

“Each of our murals absorbs about 1600 grams of CO2 during that curing process which is the equivalent daily absorption of about 33 growing trees,” Rose explains.

UXD’s largest carbon-absorbing mural to date is a floor-to-ceiling panorama in downtown Houston’s historic Mellie Esperson building, home to the company’s new creative hub. Painted by Houston-born artist Emily Ding, the mural is a tribute to the establishment’s namesake: an innovative, early 20th century entrepreneur who constructed the opulent building.

Rose says UXD plans to expand their carbon-absorbing murals project in collaboration with more local artists and establishments, while creating an artist-in-residency program themed around sustainability. Though Rose acknowledges in the grand scheme of carbon pollution these murals are not a silver bullet, he says the non-toxic paints are encouraging conversations about how artists can be conservation-minded.

“We’re trying to figure out how art as a messaging tool can help break down scientific data, a language not many people practice daily, can break down barriers and help bridge the gap to a more intuitive knowledge of sustainability,” Rose says. “We’re bringing the community together, helping them feel empowered, and giving them actionable information to help them live more sustainable lives.”

"Between Land and Sky" by artist David Maldonado was UXD's first carbon-absorbing painting. Photo courtesy of Dario DeLeon and Tommy Valdez

———

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

ExxonMobil names new partner to bolster US lithium supply chain with offtake agreement

ev supplies en route

Spring-headquartered ExxonMobil Corp. has announced a new MOU for an offtake agreement for up to 100,000 metric tons of lithium carbonate.

The agreement is with LG Chem, which is building its cathode plant in Tennessee and expects it to be the largest of its kind in the country. The project broke ground a year ago and expects an annual production capacity of 60,000 tons. The lithium will be supplied by ExxonMobil.

“America needs secure domestic supply of critical minerals like lithium,” Dan Ammann, president of ExxonMobil Low Carbon Solutions, says in a news release. “ExxonMobil is proud to lead the way in establishing domestic lithium production, creating jobs, driving economic growth, and enhancing energy security here in the United States.”

The industry currently has a lithium supply shortage due to the material's use in electric vehicle batteries and the fact that most of production happens overseas.

“Building a lithium supply chain with ExxonMobil, one of the world’s largest energy companies, holds great significance,” Shin Hak-cheol, CEO of LG Chem, adds. “We will continue to strengthen LG Chem’s competitiveness in the global supply chain for critical minerals.”

Per the release, the final investment decision is still pending.

Earlier this year, Exxon entered into another energy transition partnership, teaming up with Japan’s Mitsubishi to potentially produce low-carbon ammonia and nearly carbon-free hydrogen at ExxonMobil’s facility in Baytown.

Last month, the company announced it had signed the biggest offshore carbon dioxide storage lease in the U.S. ExxonMobil says the more than 271,000-acre site, being leased from the Texas General Land Office, complements the onshore CO2 storage portfolio that it’s assembling.

3 Houstonians named to prestigious list of climate leaders

who's who

Three Houston executives — Andrew Chang, Tim Latimer, and Cindy Taff — have been named to Time magazine’s prestigious list of the 100 Most Influential Climate Leaders in Business for 2024.

As managing director of United Airlines Ventures, Chang is striving to reduce the airline’s emissions by promoting the use of sustainable aviation fuel (SAF). Jets contribute to about two percent of global emissions, according to the International Energy Agency.

In 2023, Chang guided the launch of the Sustainable Flight Fund, which invests in climate-enhancing innovations for the airline sector. The fund aims to boost production of SAF and make it an affordable alternative fuel, Time says.

Chang tells Time that he’d like to see passage of climate legislation that would elevate the renewable energy sector.

“One of the most crucial legislative actions we could see in the next year is a focus on faster permitting processes for renewable energy projects,” Chang says. “This, coupled with speeding up the interconnection queue for renewable assets, would significantly reduce the time it takes for clean energy to come online.”

At Fervo Energy, Latimer, who’s co-founder and CEO, is leading efforts to make geothermal power “a viable alternative to fossil fuels,” says Time.

Fervo recently received government approval for a geothermal power project in Utah that the company indicates could power two million homes. In addition, Fervo has teamed up with Google to power the tech giant’s energy-gobbling data centers.

In an interview with Time, Latimer echoes Chang in expressing a need for reforms in the clean energy industry.

“Addressing climate change is going to require us to build an unprecedented amount of infrastructure so we can replace the current fossil fuel-dominated systems with cleaner solutions,” says Latimer. “Right now, many of the solutions we need are stalled out by a convoluted permitting and regulatory system that doesn’t prioritize clean infrastructure.”

Taff, CEO of geothermal energy provider Sage Geosystems, oversees her company’s work to connect what could be the world’s first geopressured geothermal storage to the electric grid, according to Time. In August, Sage announced a deal with Facebook owner Meta to produce 150 megawatts of geothermal energy for the tech company’s data centers.

Asked which climate solution, other than geothermal, deserves more attention or funding, Taff cites pumped storage hydropower.

“While lithium-ion batteries get a lot of the spotlight, pumped storage hydropower offers long-duration energy storage that can provide stability to the grid for days, not just hours,” Taff tells Time. “By storing excess energy during times of low demand and releasing it when renewables like solar and wind are not producing, it can play a critical role in balancing the intermittent nature of renewables. Investing in pumped storage hydropower infrastructure could be a game-changer in achieving a reliable, clean energy future.”

Rice University researchers pioneer climatetech breakthroughs in clean water nanotechnology

tapping in

Researchers at Rice University are making cleaner water through the use of nanotech.

Decades of research have culminated in the creation of the Water Technologies Entrepreneurship and Research (WaTER) Institute launched in January 2024 and its new Rice PFAS Alternatives and Remediation Center (R-PARC).

“Access to safe drinking water is a major limiting factor to human capacity, and providing access to clean water has the potential to save more lives than doctors,” Rice’s George R. Brown Professor of Civil and Environmental Engineering Pedro Alvarez says in a news release.

The WaTER Institute has made advancements in clean water technology research and applications established during a 10-year period of Nanotechnology Enabled Water Treatment (NEWT), which was funded by the National Science Foundation. R-PARC will use the institutional investments, which include an array of PFAS-dedicated advanced analytical equipment.

Alvarez currently serves as director of NEWT and the WaTER Institute. He’s joined by researchers that include Michael Wong, Rice’s Tina and Sunit Patel Professor in Molecular Nanotechnology, chair and professor of chemical and biomolecular engineering and leader of the WaTER Institute’s public health research thrust, and James Tour, Rice’s T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering.

“We are the leaders in water technologies using nano,” adds Wong. “Things that we’ve discovered within the NEWT Center, we’ve already started to realize will be great for real-world applications.”

The NEWT center plans to equip over 200 students to address water safety issues, and assist/launch startups.

“Across the world, we’re seeing more serious contamination by emerging chemical and biological pollutants, and climate change is exacerbating freshwater scarcity with more frequent droughts and uncertainty about water resources,” Alvarez said in a news release. “The Rice WaTER Institute is growing research and alliances in the water domain that were built by our NEWT Center.”

———

This article originally ran on InnovationMap.