It might only be Texas' grass that is green. Photo via Getty Images

Turns out — Texas might not be as green as you thought.

A new report from WalletHub looked at 25 key metrics — from green buildings per capita to energy consumption from renewable resources — to evaluate the current health of states' environment and residents’ environmental-friendliness. Texas ranked No. 38, meaning it was the thirteenth least green state, only scoring 50.40 points out of 100.

“It’s important for every American to do their part to support greener living and protect our environment. However, it’s much easier being green in some states than others," writes Cassandra Happe, a WalletHub Analyst, in the report. "For example, if a state doesn’t have a great infrastructure for alternative-fuel vehicles, it becomes much harder for residents to adopt that technology. Living in a green state is also very beneficial for the health of you and your family, as you benefit from better air, soil and water quality.”

Here's how Texas ranked among a few of the key metrics:

  • No. 35 for air quality
  • No. 38 for soil quality
  • No. 38 for water quality
  • No. 26 for LEED-certified buildings per capita
  • No. 32 for percent of renewable energy consumption
  • No. 45 for energy consumption per capita
  • No. 38 for gasoline consumption (in gallons) per capita
Despite Texas' solar energy generation surpassed the output by coal last month, according to a report from the Institute For Energy Economics and Financial Analysis, the Lone Star State has room for improvement.
California was ranked as the greenest state, with Vermont, New York, Maryland, and Washington, respectively, rounding out the top five. The country's least green state is West Virginia, followed by Louisiana, Alabama, Mississippi, and Kentucky.

The report also zeroed in on how politics play into a state's climate system. Democrat-led states ranked around No. 15 on average, whereas Republican states fell at around No. 36.


Source: WalletHub
In Texas last month, coal use dropped and solar energy soared, according to a new report. Photo via Pexels

Report: Solar tops coal in Texas for energy generation for the first time

by the numbers

For the first time in Texas, according to a recent report, solar energy generation surpassed the output by coal.

The report — from the Institute For Energy Economics and Financial Analysis — sourced the Energy Information Administration’s hourly grid monitor for March 2024. This shift in a predominantly oil and gas dominated history of Texas energy output, was due to solar power’s 3.26 million megawatt-hours to Electric Reliability Council of Texas (ERCOT) grid, compared to coal’s 2.96 million MWh.

In addition, coal’s market share fell below 10 percent to 9 percent for the first time ever, to just over 9 percent. The increase in solar energy pushed solar’s share of ERCOT generation to more than 10 percent for the month, which was also a first.

Due to its sheer size, Texas is the No.1 state for solar capacity. According to the report from SmartAsset, the Lone Star State has the most clean energy capacity at 56,405 megawatts, but continues to trail states with similar geographic characteristics in overall clean energy prevalence.

Texas only 38 percent of the state’s electricity capacity comes from clean electricity, and it has the second-largest solar capacity, which means Texas has the most means, space, and potential to accommodate cleaner electricity. Texas as a whole, ranked No. 22 on the list for states with the most clean energy in the SmartAsset report.

In Texas, generation in March 2024 was 1.17 million MWh more year-over-year, which is a 56 percent increase. ERCOT data shows that the system currently has 22,710 megawatts (MW) of operational solar capacity according to IEEFA, and is expected to expand by almost one-third by the end of 2024 with an additional 7,168 MW of capacity added. The number just considers Texas solar projects that have set aside the financing required to get onto the ERCOT grid and that have a signed interconnection agreement.

Texas burned 50.7 million tons of coal for electricity, which was 13 percent of the U.S. total in 2023 according to the EIA grid monitor. Coal's annual share of ERCOT demand ranged from 36 percent to 40 percent from 2003 through 2014. The last year percent. In 2020, coal was under 20 percent in 2020; and was less than 15 percent in 2023 supplying just 13.9 percent of the system’s total demand.

The IEEFA notes coal’s low March production is important because in recent years it has been the moderate temperatures of April and May and steady winds that have affected the usage and the market share.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Meta to buy all power from new ENGIE Texas solar farm

power purchase

Meta, the parent company of social media platform Facebook, has agreed to buy all of the power from a $900 million solar farm being developed near Abilene by Houston-based energy company ENGIE North America.

The 600-megawatt Swenson Ranch solar farm, located in Stonewall County, will be the largest one ever built in the U.S. by ENGIE. The solar farm is expected to go online in 2027.

Meta will use electricity generated by the solar farm to power its U.S. data centers. All told, Meta has agreed to purchase more than 1.3 gigawatts of renewable energy from four ENGIE projects in Texas.

“This project marks an important step forward in the partnership between our two companies and their shared desire to promote a sustainable and competitive energy model,” Paulo Almirante, ENGIE’s senior executive vice president of renewable and flexible power, said in a news release.

In September, ENGIE North America said it would collaborate with Prometheus Hyperscale, a developer of sustainable liquid-cooled data centers, to build data centers at ENGIE-owned renewable energy and battery storage facilities along the I-35 corridor in Texas. The corridor includes Austin, Dallas-Fort Worth, San Antonio and Waco.

The first projects under the ENGIE-Prometheus umbrella are expected to go online in 2026.

ENGIE and Prometheus said their partnership “brings together ENGIE's deep expertise in renewables, batteries, and energy management and Prometheus' highly efficient liquid-cooled data center design to meet the growing demand for reliable, sustainable compute capacity — particularly for AI and other high-performance workloads.”

Fervo named to prestigious list of climate tech companies to watch

top honor

Houston-based Fervo Energy has received yet another accolade—MIT Technology Review named the geothermal energy startup to its 2025 list of the 10 global climatetech companies to watch.

Fervo, making its second appearance on the third annual list, harnesses heat from deep below the ground to generate clean geothermal energy, MIT Technology Review noted. Fervo is one of four U.S. companies to land on the list.

Fervo “uses fracking techniques to create geothermal reservoirs capable of delivering enough electricity to power massive data centers and hundreds of thousands of homes,” MIT Technology Review said.

MIT Technology Review said it produces the annual list to draw attention to promising climatetech companies that are working to decarbonize major sectors of the economy.

“Though the political and funding landscape has shifted dramatically in the US since the last time we put out this list,” MIT Technology Review added, “nothing has altered the urgency of the climate dangers the world now faces — we need to rapidly curb greenhouse gas emissions to avoid the most catastrophic impacts of climate change.”

In addition to MIT Technology Review’s companies-to-watch list, Fervo has appeared on similar lists published by Inc.com, Time magazine and Climate Insider.

In an essay accompanying MIT Technology Review’s list, Microsoft billionaire Bill Gates said his Breakthrough Energy Ventures investment group has invested in more than 150 companies, including Fervo and another company on the MIT Technology Review list, Redwood Materials.

In his essay, Gates wrote that ingenuity is the best weapon against climate change.

Yet climate technology innovations “offer more than just a public good,” he said. “They will remake virtually every aspect of the world’s economy in the coming years, transforming energy markets, manufacturing, transportation, and many types of industry and food production. Some of these efforts will require long-term commitments, but it’s important that we act now. And what’s more, it’s already clear where the opportunities lie.”

In a recent blog post highlighting Fervo, Gates predicted geothermal will eventually supply up to 20 percent of the world’s electricity, up from his previous estimate of as much as 5 percent.

Fervo is one of the pioneers in geothermal energy. Gates and other investors have pumped $982 million into Fervo since its founding in 2017. With an estimated valuation of $1.4 billion, Fervo has achieved unicorn status, meaning its valuation as a private company exceeds $1 billion.

Aside from Breakthrough Energy Ventures, oilfield services provider Liberty Energy is a Fervo investor. U.S. Energy Secretary Chris Wright was chairman and CEO of Denver-based Liberty Energy before assuming his federal post.

Axios reported on Oct. 1 that Fervo is raising a $300 million series E round, which would drive up the startup’s valuation. News of the $300 million round comes as the company gears up for a possible IPO, according to Axios.

Fervo co-founder and CEO Tim Latimer told Axios this spring that a potential IPO is likely in 2026 or 2027. Ahead of an IPO, the startup is aiming for a $2 billion to $4 billion valuation, Axios reported.

The first phase of Fervo’s marquee Cape Station geothermal energy plant in Utah is scheduled to go online next year, with the second phase set to open in 2028. Once it’s completed, the plant will be capable of generating 500 megawatts of power. This summer, the startup said it secured $205.6 million in capital to finance construction of the plant.

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

clean water research

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water.

PFAS have been linked to immune system disruption, certain cancers, liver damage and reproductive disorders. They can be found in water, soil and air, as well as in products like Teflon pans, waterproof clothing and food packaging. They do not degrade easily and are difficult to remove.

Thus far, PFAS cleanup methods have relied on adsorption, in which molecules cling to materials like activated carbon or ion-exchange resins. But these methods tend to have limited capacity, low efficiency, slow performance and can create additional waste.

The Rice-led study, published in the journal Advanced Materials, centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

The study was led by Rice professor Youngkun Chung, a postdoctoral fellow under the mentorship of Michael S. Wong. It was conducted in collaboration with Seoktae Kang, professor at the Korea Advanced Institute of Science and Technology, and Keon-Ham Kim, professor at Pukyung National University, who first discovered the LDH material.

The team evaluated the LDH material in river water, tap water and wastewater. And, according to Rice, that material’s unique copper-aluminum layers and charge imbalances created an ideal binding environment to capture PFAS molecules.

“To my astonishment, this LDH compound captured PFAS more than 1,000 times better than other materials,” Chung, lead author of the study and now a fellow at Rice’s WaTER (Water Technologies, Entrepreneurship and Research) Institute and Sustainability Institute, said in a news release. “It also worked incredibly fast, removing large amounts of PFAS within minutes, about 100 times faster than commercial carbon filters.”

Next, Chung, along with Rice professors Pedro Alvarez and James Tour, worked to develop an eco-friendly, sustainable method of thermally decomposing the PFAS captured on the LDH material. They heated saturated material with calcium carbonate, which eliminated more than half of the trapped PFAS without releasing toxic by-products.

The team believes the study’s results could potentially have large-scale applications in industrial cleanups and municipal water treatments.

“We are excited by the potential of this one-of-a-kind LDH-based technology to transform how PFAS-contaminated water sources are treated in the near future,” Wong added in the news release. “It’s the result of an extraordinary international collaboration and the creativity of young researchers.”

---

This article originally appeared on our sister site, InnovationMap.