The two companies will work closely with UH's Repurposing Offshore Infrastructure for Clean Energy Project Collaborative, or the ROICE project. Photo via UH.edu

The University of Houston has signed a memorandum of understanding with two Houston-based companies that aims to repurpose offshore infrastructure for the energy transition.

The partnership with Promethean Energy and Endeavor Management ensures that the two companies will work closely with UH's Repurposing Offshore Infrastructure for Clean Energy Project Collaborative, or the ROICE project. The collaborative is supported by about 40 institutions to address the economic and technical challenges behind repurposing offshore wells, according to a statement from UH. It's funded in part by the Department of the Treasury through the State of Texas.

“These MOUs formalize our mutual commitment to advance the industry's implementation of energy transition strategies,” Ram Seetharam, Energy Center officer and ROICE program lead, said in the statement. “Together, we aim to create impactful solutions that will benefit both the energy sector and society as a whole.”

UH announced the partnership last week. Photo via UH.edu

Promethean Energy develops, produces, and decommissions mature assets in a cost-effective and environmentally sustainable manner. It began working on the temporary abandonment of nine wells located in the Matagorda Island lease area in the Gulf of Mexico earlier this year.

According to Clint Boman, senior vice president of operations at Promethean, it is slated to become the first ROICE operator of a repurposed oil and gas facility in the Gulf of Mexico.

"Promethean Energy is focused on being the best, last steward of offshore oil and gas production assets, and our strategy is fully aligned with an orderly energy transition,” Borman said in the statement.

Endeavor Management is a consulting firm that works in several industries, including oil and gas, industrial service, transportation, technology and more.

“Our collaboration for this ROICE phase and with the RPC will blend our offshore operations expertise, our years of experience addressing evolving regulatory requirements with our decades of creating innovative commercial enterprises to meet the demands of energy transition” John McKeever, chief growth officer of Endeavor Management, said in the statement. “Together, we will create the blueprint that drives real business impact with the application of clean energy principles.”

The new partnerships will help foster ROICE's second phase. The first was focused on research and reports on how to implement ROICE projects, with the latest published earlier this month. This second phase will focus on innovation and implementation frameworks.

Additionally, at the signing of the MOU, ROICE revealed its new logo that features an oil and gas platform that's been transformed to feature wind turbines, a hydrogen tank and other symbols of the energy transition.

This spring, UH signed a memorandum of understanding with Heriot-Watt University in Scotland to focus on hydrogen energy solutions. The following month, Rice University announced it had inked a strategic partnership agreement with Université Paris Sciences & Lettres to collaborate on "fields of energy and climate," among other pressing issues. Click here to read more.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Wind and solar supplied over a third of ERCOT power, report shows

power report

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”