Junichiro Kono has assumed leadership of the Smalley-Curl Institute at Rice University. Photo via Rice.edu

A distinguished Rice University professor has assumed the reins of a unique institute that focuses on research within nanoscience, quantum science, and materials science.

Junichiro Kono has assumed leadership of the Smalley-Curl Institute, which houses some of the world’s most accomplished researchers across fields including advanced materials, quantum magnetism, plasmonics and photonics, biophysics and bioengineering, all aspects of nanoscience and nanotechnology, and more.

“With his great track record in fostering international research talent — with student exchange programs between the U.S., Japan, Taiwan, China, Singapore and France that have introduced hundreds of students to new cultures and ways of researching science and engineering — Jun brings a wealth of experience in building cultural and technological ties across the globe,” Ramamoorthy Ramesh, executive vice president for research, says in a news release.

Kono is the Karl F. Hasselmann Professor in Engineering, chair of the Applied Physics Graduate Program and professor of electrical and computer engineering, physics and astronomy and materials science and nanoengineering, and is considered a global leader in studies of nanomaterials and light-matter interactions. He currently leads Rice’s top 10-ranked Applied Physics Graduate Program.

Under his leadership, the program is expected to double in size over. By 2029. The Smalley-Curl Institute will also add additional postdoctoral research fellowships to the current three endowed positions.

The Smalley-Curl Institute is named for Nobel Laureates Richard Smalley and Robert Curl (‘54). Earlier in his career, Kono once worked with Smalley on the physical properties of single-wall carbon nanotubes (SWCNTs), which led to the experimental discovery of the Aharonov-Bohm effect on the band structure of SWCNTs in high magnetic fields.

“I am deeply honored and excited to lead the Smalley-Curl Institute,” Kono says in a news release. “The opportunity to build upon the incredible legacy of Richard Smalley and Robert Curl is both a privilege and a challenge, which I embrace wholeheartedly. I’m really looking forward to working with the talented researchers and students at Rice University to further advance our understanding and application of nanomaterials and quantum phenomena. Together, we can accomplish great things.”

Kono succeeds Rice professor Naomi Halas as director of the institute. Halas is the Stanley C. Moore Professor of Electrical and Computer Engineering and the founding director of the Laboratory for Nanophotonics.

At Houston event, the Department of Energy’s Advanced Research Projects Agency-Energy announced $100 million in cleantech funding. Photos by Jeff Fitlow/Rice University

National agency announces $100M in funding for energy advancement at Houston event

seeing green

Rice University played host to the first-of-its-kind event from the Department of Energy’s Advanced Research Projects Agency-Energy, or ARPA-E, earlier this month in which the governmental agency announced $100 million in funding for its SCALEUP program.

Dubbed “ARPA-E on the Road: Houston,” the event welcomed more than 100 energy innovators to the Hudspeth Auditorium in Rice’s Anderson-Clarke Center on June 8. Evelyn Wang, director of ARPA-E, announced the funding, which represents the third installment from the agency for its program SCALEUP, or Seeding Critical Advances for Leading Energy technologies with Untapped Potential, which supports the commercialization of clean energy technology.

The funding is awarded to previous ARPA-E awardees with a "viable road to market" and "ability to attract private sector investments," according to a statement from the Department of Energy. Previous funding was granted in 2019 and 2021.

"ARPA-E’s SCALEUP program has successfully demonstrated what can happen when technical experts are empowered with the commercialization support to develop a strong pathway to market” Wang said. “I’m excited that we are building on the success of this effort with the third installment of SCALEUP, and I look forward to what the third cohort of teams accomplish.”

Rice Vice President for Research Ramamoorthy Ramesh also spoke at the event on how Rice is working to make Houston a leader in energy innovation. Joe Zhou, CEO of Houston-based Quidnet Energy, also spoke on a panel about how ARPA-E funding benefited his company along with Oregon-based Onboard Dynamics’s CEO Rita Hansen and Massachusetts-based Quaise Energy’s CEO Carlos Araque.

Attendees were able to ask questions to Wang and ARPA-E program directors about the agency’s funding approach and other topics at the event.

Houston energy innovators have benefited from programs like SCALEUP.

Quidnet Energy received $10 million in funding from ARPA-E as part of its SCALEUP program in 2022. The company's technology can store renewable energy for long periods of time in large quantities.

In January, Houston-based Zeta Energy also announced that it has secured funding from ARPA-E. The $4 million in funding came from the agency's Electric Vehicles for American Low-Carbon Living, or EVs4ALL, program. Zeta Energy is known for its lithium sulfur batteries

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

LYB makes deal to bring new plastics recycling hub to German town

guten tag

Houston-based chemical company LyondellBasell has signed a land lease agreement for a new integrated plastic waste recycling hub by an existing industrial park in Knapsack, Germany.

The agreement is with YNCORIS, a German industrial service provider. The hub will combine advanced sorting and recycling operations to address the plastic waste challenge and the company hopes it will grow the circular economy.

The first phase of the project will see the construction of an advanced sorting facility, which will process mixed plastic waste that can produce feedstock for mechanical and advanced recycling, since this mixed plastic waste is not recycled and usually sent to incineration for energy recovery. The hub's initial advanced sorting facility expects to start operations in the first quarter of 2026. The large facility will cover an area equivalent to 20 soccer fields.

"The industrial park in Knapsack is the ideal location for our integrated hub as is it close to our world-scale facilities in Wesseling and will allow us to develop additional technologies for the recycling of plastic waste," Yvonne van der Laan, LyondellBasell's executive vice president of circular and low carbon solutions, says in a news release. "The integration of various technologies will allow us to build scale and offer our customers a wide range of products from recycled and renewable resources."

In April, LyondellBasell also secured 208 megawatts of renewable energy capacity from a solar park in Germany. Under the 12-year deal, LyondellBasell aim s to purchase about 210 gigawatt-hours of solar power each year from Germany-based Encavis Asset Management.

By 2030, LyondellBasell hopes to produce and market at least 2 million metric tons of recycled and renewable‑based polymers annually.

US wants details on Tesla's fix from recalled automated driving system

looking under the hood

Federal highway safety investigators want Austin-based Tesla to tell them how and why it developed the fix in a recall of more than 2 million vehicles equipped with the company's Autopilot partially automated driving system.

Investigators with the U.S. National Highway Traffic Safety Administration have concerns about whether the recall remedy worked because Tesla has reported 20 crashes since the remedy was sent out as an online software update in December.

The recall fix also was to address whether Autopilot should be allowed to operate on roads other than limited access highways. The fix for that was increased warnings to the driver on roads with intersections.

But in a letter to Tesla posted on the agency's website Tuesday, investigators wrote that they could not find a difference between warnings to the driver to pay attention before the recall and after the new software was released. The agency said it will evaluate whether driver warnings are adequate, especially when a driver-monitoring camera is covered.

The agency asked for volumes of information about how Tesla developed the fix, and zeroed in on how it used human behavior to test the recall effectiveness.

Phil Koopman, a professor at Carnegie Mellon University who studies automated driving safety, said the letter shows that the recall did little to solve problems with Autopilot and was an attempt to pacify NHTSA, which demanded the recall after more than two years of investigation.

“It’s pretty clear to everyone watching that Tesla tried to do the least possible remedy to see what they could get away with,” Koopman said. “And NHTSA has to respond forcefully or other car companies will start pushing out inadequate remedies.”

Safety advocates have long expressed concern that Autopilot, which can keep a vehicle in its lane and a distance from objects in front of it, was not designed to operate on roads other than limited access highways.

Missy Cummings, a professor of engineering and computing at George Mason University who studies automated vehicles, said NHTSA is responding to criticism from legislators for a perceived lack of action on automated vehicles.

“As clunky as our government is, the feedback loop is working,” Cummings said. “I think the NHTSA leadership is convinced now that this is a problem.”

The 18-page NHTSA letter asks how Tesla used human behavior science in designing Autopilot, and the company's assessment of the importance of evaluating human factors.

It also wants Tesla to identify every job involved in human behavior evaluation and the qualifications of the workers. And it asks Tesla to say whether the positions still exist.

A message was left by The Associated Press early Tuesday seeking comment from Tesla about the letter.

Tesla is in the process of laying off about 10% of its workforce, about 14,000 people, in an effort to cut costs to deal with falling global sales.

Cummings said she suspects that CEO Elon Musk would have laid off anyone with human behavior knowledge, a key skill needed to deploy partially automated systems like Autopilot, which can't drive themselves and require humans to be ready to intervene at all times.

“If you're going to have a technology that depends upon human interaction, you better have someone on your team that knows what they are doing in that space,” she said.

Cummings said her research has shown that once a driving system takes over steering from humans, there is little left for the human brain to do. Many drivers tend to overly rely on the system and check out.

“You can have your head fixed in one position, you can potentially have your eyes on the road, and you can be a million miles away in your head,” she said. “All the driver monitoring technologies in the world are still not going to force you to pay attention.”

In its letter, NHTSA also asks Tesla for information about how the recall remedy addresses driver confusion over whether Autopilot has been turned off if force is put on the steering wheel. Previously, if Autopilot was de-activated, drivers might not notice quickly that they have to take over driving.

The recall added a function that gives a “more pronounced slowdown” to alert drivers when Autopilot has been disengaged. But the recall remedy doesn’t activate the function automatically — drivers have to do it. Investigators asked how many drivers have taken that step.

NHTSA is asking Telsa “What do you mean you have a remedy and it doesn’t actually get turned on?” Koopman said.

The letter, he said, shows NHTSA is looking at whether Tesla did tests to make sure the fixes actually worked. “Looking at the remedy I struggled to believe that there’s a lot of analysis proving that these will improve safety,” Koopman said.

The agency also says Tesla made safety updates after the recall fix was sent out, including an attempt to reduce crashes caused by hydroplaning and to reduce collisions in high speed turn lanes. NHTSA said it will look at why Tesla didn't include the updates in the original recall.

NHTSA could seek further recall remedies, make Tesla limit where Autopilot can work, or even force the company to disable the system until it is fixed, safety experts said.

NHTSA began its Autopilot investigation in 2021, after receiving 11 reports that Teslas using Autopilot struck parked emergency vehicles. In documents explaining why the investigation was ended due to the recall, NHTSA said it ultimately found 467 crashes involving Autopilot resulting in 54 injuries and 14 deaths.

Houston expert on why companies are investing in sustainable energy technology

guest column

In a modern business landscape characterized by increasing uncertainty and volatility, energy resilience has emerged as a cornerstone of strategic decision-making.

Let's delve deeper into why executives should view energy resilience as one of the best risk management investments they can make.

Mitigating risks and enhancing stability

Investing in energy resilience isn't solely about averting risks; it's about mitigating the potential losses that could arise from energy-related disruptions. It is estimated that half of today’s businesses lack an effective resilience strategy, even though nearly 97 percent of companies have been impacted by a critical risk event.

Whether it's power outages from extreme weather events, grid emergencies from a changing resource mix that is more weather dependent or cyber-attacks, disruptions can inflict substantial financial and reputational damage on businesses. By implementing resilient energy infrastructure and practices, organizations can minimize the impact of such disruptions, ensuring consistent operations even in the face of adversity. As an added benefit, these investments can also contribute to enhancing the stability of our grid infrastructure, benefiting not just individual businesses but the local community and the entire economy.

Improving costs and operational efficiency

Energy resilience also isn't just a defensive strategy; it's also about optimizing costs and operational efficiency to create competitive advantage. By investing in resilient energy infrastructure, such as backup power systems and microgrids, businesses can reduce the downtime associated with energy disruptions, thus avoiding revenue losses and operational inefficiencies.

Additionally, resilient energy solutions often lead to long-term cost savings through increased energy efficiency and reduced reliance on costly backup systems. As circumstances become increasingly uncertain, businesses that prioritize energy resilience can gain a competitive edge by operating more efficiently and cost-effectively than their counterparts.

Ensuring consistent operations amidst uncertainty

In today's rapidly changing business environment, characterized by geopolitical tensions, climate change, and technological advancements, uncertainty has become the new normal. Amidst this uncertainty, ensuring consistent operations is paramount for business continuity and long-term success. Investing in energy resilience provides businesses with the assurance that they can maintain operations even in the face of unforeseen challenges.

Whether it's a sudden power outage from a storm or the grid is stressed and unable to deliver reliable power, resilient energy infrastructure enables organizations to adapt swiftly and continue delivering products and services to customers without interruption.

Enhancing sustainability efforts

In recent years, a growing emphasis on sustainability and environmental stewardship has led to organizations recognizing the importance of reducing their carbon footprint and transitioning towards cleaner, renewable energy sources. Investing in energy resilience provides an opportunity to align sustainability efforts with business objectives.

By integrating renewable energy technologies and energy-efficient practices into their resilience strategies, organizations can not only enhance their environmental performance but also achieve long-term cost savings, ensure regulatory compliance, and build stakeholder trust.

The value of energy resilience for businesses

It is not enough to successfully handle day-to-day operations anymore; organizations need to be prepared for unpredictable events with a reliable energy supply and backup plan. Recently, a hospital in Texas had to evacuate patients and experienced heavy financial losses due to the failure of their traditional diesel generators during an extended outage.

After reevaluating their resiliency strategy, they decided to implement full-facility backup power using Enchanted Rock’s dual-purpose managed microgrid solution, which kept their power on during the next outage and ensured both patient safety and full operational capabilities. Investing in an energy resilience strategy like a microgrid will mitigate these risks and ensure always-on power in times of uncertainty.

A responsible decision for the greater good

Beyond the immediate benefits to individual businesses, investing in energy resilience is also a responsible decision for the greater good. As businesses become increasingly reliant on the grid infrastructure, ensuring its resilience is essential for the stability and reliability of the entire energy ecosystem. By proactively investing in resilient energy solutions, for themselves, businesses also contribute to strengthening the grid infrastructure, reducing the risk of widespread outages, and promoting the overall resilience of the energy system.

Executives must recognize the strategic imperative of investing in resilient energy infrastructure like microgrid systems, which can provide a competitive advantage against organizations that do not have similar measures in place. In doing so, they can navigate uncertainty with confidence, set their business up for future success, and emerge stronger and more resilient than ever before.

———

Ken Cowan is the senior vice president of Enchanted Rock, a Houston-based provider of microgrid technology.