Under a new agreement, ExxonMobil and Rice University aim to develop “systematic and comprehensive solutions” to support the global energy transition. Photo via Getty Images.

Houston-based ExxonMobil and Rice University announced a master research agreement this week to collaborate on research initiatives on sustainable energy efforts and solutions. The agreement includes one project that’s underway and more that are expected to launch this year.

“Our commitment to science and engineering, combined with Rice’s exceptional resources for research and innovation, will drive solutions to help meet growing energy demand,” Mike Zamora, president of ExxonMobil Technology and Engineering Co., said in a news release. “We’re thrilled to work together with Rice.”

Rice and Exxon will aim to develop “systematic and comprehensive solutions” to support the global energy transition, according to Rice. The university will pull from the university’s prowess in materials science, polymers and catalysts, high-performance computing and applied mathematics.

“Our agreement with ExxonMobil highlights Rice’s ability to bring together diverse expertise to create lasting solutions,” Ramamoorthy Ramesh, executive vice president for research at Rice, said in the release. “This collaboration allows us to tackle key challenges in energy, water and resource sustainability by harnessing the power of an interdisciplinary systems approach.”

The first research project under the agreement focuses on developing advanced technologies to treat desalinated produced water from oil and gas operations for potential reuse. It's being led by Qilin Li, professor of civil and environmental engineering at Rice and co-director of the Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT) Center.

Li’s research employs electrochemical advanced oxidation processes to remove harmful organic compounds and ammonia-nitrogen, aiming to make the water safe for applications such as agriculture, wildlife and industrial processes. Additionally, the project explores recovering ammonia and producing hydrogen, contributing to sustainable resource management.

Additional projects under the agreement with Exxon are set to launch in the coming months and years, according to Rice.

Rice University has established a new center that will work toward meeting the Environmental Protection Agency's strict standards for PFAS. Photo by Jeff Fitlow/Rice University

New research center at Rice aims to work toward strict EPA standards for forever chemicals

pfas r&d

Rice University announced a new research center that will focus on per- and polyfluoroalkyl substances (PFAS) called the Rice PFAS Alternatives and Remediation Center (R-PARC).

R-PARC promises to unite industry, policy experts, researchers, and entrepreneurs to “foster collaboration and accelerate the development of innovative solutions to several PFAS challenges,” according to a news release. Challenges include comprehensive PFAS characterization and risk assessment, water treatment infrastructure upgrades, contaminated site remediation, and the safe alternatives development.

“We firmly believe that Rice is exceptionally well-positioned to develop disruptive technologies and innovations to address the global challenges posed by PFAS,” Rice President Reginald DesRoches says in a news release. “We look forward to deepening our relationship with ERDC and working together to address these critical challenges.”

The Environmental Protection Agency issued its stringent standards for some of the most common PFAS, which set the maximum contaminant level at 4.0 parts per trillion for two of them. Pedro Alvarez, Rice’s George R. Brown Professor of Civil and Environmental Engineering, director of the WaTER Institute, likened this in a news release to “four drops in 1,000 Olympic pools,” and also advocated that the only way to meet these strict standards is through technological innovation.

The center will be housed under Rice’s Water Technologies Entrepreneurship and Research (WaTER) Institute that was launched in January 2024. The WaTER Institute has worked on advancements in clean water technology research and applications established during the decade-long tenure of the Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, which was funded by the National Science Foundation.

“The challenge of PFAS cuts across several of the four major research trajectories that define Rice’s strategic vision,” Rice’s executive vice president for research and professor of materials science and nanoengineering and physics and astronomy Ramamoorthy Ramesh, adds in the release. “R-PARC will help focus and amplify ongoing work on PFAS remediation at Rice.”

The ERDC delegation was led by agency director David Pittman who also serves as the director of research and development and chief scientist for the U.S. Army Corps of Engineers. ERDC representatives also met with several Rice researchers that were involved in work related to the environment, and sustainability, and toured the labs and facilities.

Junichiro Kono has assumed leadership of the Smalley-Curl Institute at Rice University. Photo via Rice.edu

Rice names new leader for prestigious nanotechnology, materials science institute

take the lead

A distinguished Rice University professor has assumed the reins of a unique institute that focuses on research within nanoscience, quantum science, and materials science.

Junichiro Kono has assumed leadership of the Smalley-Curl Institute, which houses some of the world’s most accomplished researchers across fields including advanced materials, quantum magnetism, plasmonics and photonics, biophysics and bioengineering, all aspects of nanoscience and nanotechnology, and more.

“With his great track record in fostering international research talent — with student exchange programs between the U.S., Japan, Taiwan, China, Singapore and France that have introduced hundreds of students to new cultures and ways of researching science and engineering — Jun brings a wealth of experience in building cultural and technological ties across the globe,” Ramamoorthy Ramesh, executive vice president for research, says in a news release.

Kono is the Karl F. Hasselmann Professor in Engineering, chair of the Applied Physics Graduate Program and professor of electrical and computer engineering, physics and astronomy and materials science and nanoengineering, and is considered a global leader in studies of nanomaterials and light-matter interactions. He currently leads Rice’s top 10-ranked Applied Physics Graduate Program.

Under his leadership, the program is expected to double in size over. By 2029. The Smalley-Curl Institute will also add additional postdoctoral research fellowships to the current three endowed positions.

The Smalley-Curl Institute is named for Nobel Laureates Richard Smalley and Robert Curl (‘54). Earlier in his career, Kono once worked with Smalley on the physical properties of single-wall carbon nanotubes (SWCNTs), which led to the experimental discovery of the Aharonov-Bohm effect on the band structure of SWCNTs in high magnetic fields.

“I am deeply honored and excited to lead the Smalley-Curl Institute,” Kono says in a news release. “The opportunity to build upon the incredible legacy of Richard Smalley and Robert Curl is both a privilege and a challenge, which I embrace wholeheartedly. I’m really looking forward to working with the talented researchers and students at Rice University to further advance our understanding and application of nanomaterials and quantum phenomena. Together, we can accomplish great things.”

Kono succeeds Rice professor Naomi Halas as director of the institute. Halas is the Stanley C. Moore Professor of Electrical and Computer Engineering and the founding director of the Laboratory for Nanophotonics.

At Houston event, the Department of Energy’s Advanced Research Projects Agency-Energy announced $100 million in cleantech funding. Photos by Jeff Fitlow/Rice University

National agency announces $100M in funding for energy advancement at Houston event

seeing green

Rice University played host to the first-of-its-kind event from the Department of Energy’s Advanced Research Projects Agency-Energy, or ARPA-E, earlier this month in which the governmental agency announced $100 million in funding for its SCALEUP program.

Dubbed “ARPA-E on the Road: Houston,” the event welcomed more than 100 energy innovators to the Hudspeth Auditorium in Rice’s Anderson-Clarke Center on June 8. Evelyn Wang, director of ARPA-E, announced the funding, which represents the third installment from the agency for its program SCALEUP, or Seeding Critical Advances for Leading Energy technologies with Untapped Potential, which supports the commercialization of clean energy technology.

The funding is awarded to previous ARPA-E awardees with a "viable road to market" and "ability to attract private sector investments," according to a statement from the Department of Energy. Previous funding was granted in 2019 and 2021.

"ARPA-E’s SCALEUP program has successfully demonstrated what can happen when technical experts are empowered with the commercialization support to develop a strong pathway to market” Wang said. “I’m excited that we are building on the success of this effort with the third installment of SCALEUP, and I look forward to what the third cohort of teams accomplish.”

Rice Vice President for Research Ramamoorthy Ramesh also spoke at the event on how Rice is working to make Houston a leader in energy innovation. Joe Zhou, CEO of Houston-based Quidnet Energy, also spoke on a panel about how ARPA-E funding benefited his company along with Oregon-based Onboard Dynamics’s CEO Rita Hansen and Massachusetts-based Quaise Energy’s CEO Carlos Araque.

Attendees were able to ask questions to Wang and ARPA-E program directors about the agency’s funding approach and other topics at the event.

Houston energy innovators have benefited from programs like SCALEUP.

Quidnet Energy received $10 million in funding from ARPA-E as part of its SCALEUP program in 2022. The company's technology can store renewable energy for long periods of time in large quantities.

In January, Houston-based Zeta Energy also announced that it has secured funding from ARPA-E. The $4 million in funding came from the agency's Electric Vehicles for American Low-Carbon Living, or EVs4ALL, program. Zeta Energy is known for its lithium sulfur batteries

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston oil giant ConocoPhillips will lay off up to 25% of workforce

Workforce News

Oil giant ConocoPhillips is planning to lay off up to a quarter of its workforce, amounting to thousands of jobs, as part of broader efforts from the company to cut costs.

A spokesperson for ConocoPhillips confirmed the layoffs on Wednesday, September 3, noting that 20% to 25% of the company's employees and contractors would be impacted worldwide. ConocoPhillips currently has a global headcount of about 13,000 — meaning that the cuts would impact between 2,600 and 3,250 workers.

“We are always looking at how we can be more efficient with the resources we have,” a ConocoPhillips' spokesperson said via email, adding that the company expects the “majority of these reductions” to take place before the end of 2025.

ConocoPhillips' shares fell 4.3% last week. The Houston-based company's stock now sits at under $95 per share, down nearly 14% from a year ago.

News of the coming layoffs was first reported by Reuters, with anonymous sources telling the outlet that CEO Ryan Lance detailed the plans in a video message earlier Wednesday. In that video, Reuters reported, Lance said the company needed “fewer roles” while he cited rising costs.

Last month, ConocoPhillips reported second-quarter earnings of $1.97 billion. That beat Wall Street expectations, but was down from the nearly $2.33 billion the company reported for the same period last year.

In its latest earnings, reported on August 7, ConocoPhillips continued to point to cost cutting efforts — noting that it had identified more than $1 billion in cost reductions and margin optimization. The company also said it had agreed to sell its Anadarko Basin assets for $1.3 billion.

Engie launches next-generation data center development in Texas

coming soon

Houston-based Engie North America has entered into an agreement with Wyoming-based Prometheus Hyperscale to develop liquid-cooled data centers at select renewable and battery storage energy facilities along Texas’ I-35 corridor. Its first AI-ready data center compute capacity sites are expected to go live in 2026.

“By leveraging our robust portfolio of wind, solar, and battery storage assets — combined with our commercial and industrial supply capabilities and deep trading expertise — we're providing integrated energy solutions that support scalable, resilient, and sustainable infrastructure," David Carroll, chief renewables officer and SVP of ENGIE North America, said in a news release.

Prometheus plans to use its high-efficiency, liquid-cooled data center infrastructure in conjunction with ENGIE's renewable and battery storage assets. Both companies believe they can meet the growing demand for reliable, sustainable compute capacity, which would support AI and other more demanding workloads.

"Prometheus is committed to developing sustainable, next-generation digital infrastructure for AI," Bernard Looney, chairman of Prometheus Hyperscale, said in the release. "We cannot do this alone—ENGIE's existing assets and expertise as a major player in the global energy transition make them a perfect partner as we work to build data centers that meet market needs today and tomorrow."

On-site power generation provider Conduit Power will assist Prometheus for near-term bridging and back-up solutions, and help tenants to offset project-related carbon emissions through established market-based mechanisms.

More locations are being planned for 2027 and beyond.

"Our collaboration with Prometheus demonstrates our shared approach to finding innovative approaches to developing, building and operating projects that solve real-world challenges,” Carroll added in the release.

Oxy's $1.3B Texas carbon capture facility on track to​ launch this year

gearing up

Houston-based Occidental Petroleum is gearing up to start removing CO2 from the atmosphere at its $1.3 billion direct air capture (DAC) project in the Midland-Odessa area.

Vicki Hollub, president and CEO of Occidental, said during the company’s recent second-quarter earnings call that the Stratos project — being developed by carbon capture and sequestration subsidiary 1PointFive — is on track to begin capturing CO2 later this year.

“We are immensely proud of the achievements to date and the exceptional record of safety performance as we advance towards commercial startup,” Hollub said of Stratos.

Carbon dioxide captured by Stratos will be stored underground or be used for enhanced oil recovery.

Oxy says Stratos is the world’s largest DAC facility. It’s designed to pull 500,000 metric tons of carbon dioxide from the air and either store it underground or use it for enhanced oil recovery. Enhanced oil recovery extracts oil from unproductive reservoirs.

Most of the carbon credits that’ll be generated by Stratos through 2030 have already been sold to organizations such as Airbus, AT&T, All Nippon Airways, Amazon, the Houston Astros, the Houston Texans, JPMorgan, Microsoft, Palo Alto Networks and TD Bank.

The infrastructure business of investment manager BlackRock has pumped $550 million into Stratos through a joint venture with 1PointFive.

As it gears up to kick off operations at Stratos, Occidental is also in talks with XRG, the energy investment arm of the United Arab Emirates-owned Abu Dhabi National Oil Co., to form a joint venture for the development of a DAC facility in South Texas. Occidental has been awarded up to $650 million from the U.S. Department of Energy to build the South Texas DAC hub.

The South Texas project, to be located on the storied King Ranch, will be close to industrial facilities and energy infrastructure along the Gulf Coast. Initially, the roughly 165-square-mile site is expected to capture 500,000 metric tons of carbon dioxide per year, with the potential to store up to 3 billion metric tons of CO2 per year.

“We believe that carbon capture and DAC, in particular, will be instrumental in shaping the future energy landscape,” Hollub said.