A team led by M.A.S.R. Saadi and Muhammad Maksud Rahman has developed a biomaterial that they hope could be used for the “next disposable water bottle." Photo courtesy Rice University.

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic.

The research was led by Muhammad Maksud Rahman, an assistant professor of mechanical and aerospace engineering at the University of Houston and an adjunct assistant professor of materials science and nanoengineering at Rice University. The team shared its findings in a study in the journal Nature Communications earlier this month. M.A.S.R. Saadi, a doctoral student in material science and nanoengineering at Rice, served as the first author.

The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties,” according to the researchers.

Biomaterials typically have weaker mechanical properties than their synthetic counterparts. However, the team was able to develop sheets of material with similar strengths to some metals and glasses. And still, the material was foldable and fully biodegradable.

To achieve this, the team developed a rotational bioreactor and utilized fluid motion to guide the bacteria fibers into a consistent alignment, rather than allowing them to align randomly, as they would in nature.

The process also allowed the team to easily integrate nanoscale additives—like graphene, carbon nanotubes and boron nitride—making the sheets stronger and improving the thermal properties.

“This dynamic biosynthesis approach enables the creation of stronger materials with greater functionality,” Saadi said in a release. “The method allows for the easy integration of various nanoscale additives directly into the bacterial cellulose, making it possible to customize material properties for specific applications.”

Ultimately, the scientists at UH and Rice hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth.

Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

“We envision these strong, multifunctional and eco-friendly bacterial cellulose sheets becoming ubiquitous, replacing plastics in various industries and helping mitigate environmental damage,” Rahman said the release.

The project would nearly eliminate the emissions associated with power and steam generation at the Dow plant in Seadrift, Texas. Getty Images

Dow aims to power Texas manufacturing complex with next-gen nuclear reactors

Clean Energy

Dow, a major producer of chemicals and plastics, wants to use next-generation nuclear reactors for clean power and steam at a Texas manufacturing complex instead of natural gas.

Dow's subsidiary, Long Mott Energy, applied Monday to the U.S. Nuclear Regulatory Commission for a construction permit. It said the project with X-energy, an advanced nuclear reactor and fuel company, would nearly eliminate the emissions associated with power and steam generation at its plant in Seadrift, Texas, avoiding roughly 500,000 metric tons of planet-warming greenhouse gas emissions annually.

If built and operated as planned, it would be the first U.S. commercial advanced nuclear power plant for an industrial site, according to the NRC.

For many, nuclear power is emerging as an answer to meet a soaring demand for electricity nationwide, driven by the expansion of data centers and artificial intelligence, manufacturing and electrification, and to stave off the worst effects of a warming planet. However, there are safety and security concerns, the Union of Concerned Scientists cautions. The question of how to store hazardous nuclear waste in the U.S. is unresolved, too.

Dow wants four of X-energy's advanced small modular reactors, the Xe-100. Combined, those could supply up to 320 megawatts of electricity or 800 megawatts of thermal power. X-energy CEO J. Clay Sell said the project would demonstrate how new nuclear technology can meet the massive growth in electricity demand.

The Seadrift manufacturing complex, at about 4,700 acres, has eight production plants owned by Dow and one owned by Braskem. There, Dow makes plastics for a variety of uses including food and beverage packaging and wire and cable insulation, as well as glycols for antifreeze, polyester fabrics and bottles, and oxide derivatives for health and beauty products.

Edward Stones, the business vice president of energy and climate at Dow, said submitting the permit application is an important next step in expanding access to safe, clean, reliable, cost-competitive nuclear energy in the United States. The project is supported by the Department of Energy’s Advanced Reactor Demonstration Program.

The NRC expects the review to take three years or less. If a permit is issued, construction could begin at the end of this decade, so the reactors would be ready early in the 2030s, as the natural gas-fired equipment is retired.

A total of four applicants have asked the NRC for construction permits for advanced nuclear reactors. The NRC issued a permit to Abilene Christian University for a research reactor and to Kairos Power for one reactor and two reactor test versions of that company's design. It's reviewing an application by Bill Gates and his energy company, TerraPower, to build an advanced reactor in Wyoming.

X-energy is also collaborating with Amazon to bring more than 5 gigawatts of new nuclear power projects online across the United States by 2039, beginning in Washington state. Amazon and other tech giants have committed to using renewable energy to meet the surging demand from data centers and artificial intelligence and address climate change.

Lummus and Citroniq say their first plant, set for completion in 2027, will produce 400,000 metric tons of green polypropylene each year. Photo via lummustechnology.com

Houston companies partner on sustainable plastics alternative

green polypropylene

Two Houston companies, Lummus Technology and Citroniq Chemicals, have paired up to build North American plants that produce green polypropylene.

Polypropylene is a thermoplastic used to manufacture items such as plastic packaging, plastic parts, medical supplies, textiles, and fibers. Green polypropylene is made from biomass.

Lummus and Citroniq say their first plant, set for completion in 2027, will produce 400,000 metric tons of green polypropylene each year. The plant will be at an undisclosed location in the Midwest.

In April, Lummus and Citroniq signed a letter of intent to develop Citroniq green polypropylene projects in North America using Lummus’ Verdenesuite of polypropylene technology. Their newly announced licensing and engineering agreements apply to the first of four planned facilities.

“This agreement demonstrates the progress we continue to make with Citroniq in establishing the first world-scale sustainable bio-polypropylene production process in North America,” Romain Lemoine, chief business officer for polymers and petrochemicals at Lummus, says in a news release.

“Combining Lummus’ leadership in polypropylene licensing with Citroniq’s carbon-negative production capabilities will help us meet the growing demand for bio-polypropylene and accelerate the decarbonization of the downstream energy industry,” Lemoine adds.

Citroniq says it’s investing more than $5 billion to expand its E2O process. The process produces carbon-negative plastics and hydrogen-and-carbon compounds called olefins from fully sustainable feedstocks. This eliminates the use of convention fossil-fuel hydrocarbons, Citroniq says.

Mel Badheka, principal and co-founder of Citroniq, says his company aims “to meet the market’s growing need for sustainable carbon-negative polypropylene at a competitive price.”

The global market for green polypropylene was valued at $123.5 billion in 2022, according to Grand View Research. Growth in the sector is being driven in part by the construction industry, the firm says.

Asking ChatGPT what all was made from petroleum produced surprising results - the answer: everything. Photo by Sanket Mishra/Unsplash

Energy truly IS everywhere according to ChatGPT

EVERYDAY ENERGY

I sat down to have a conversation with ChatGPT from OpenAI about energy by-products; specifically, everyday items we use that contain some form of petrochemicals. My first prompt was rather broad, so I wasn’t surprised to get back a rather broad answer highlighting product categories instead of specific examples. Plastics, synthetic fibers, cleaning products, personal care products, medicines, paints & coatings, and adhesives were all succinctly summarized, but I wanted to dive deeper.

Given that AI has an almost limitless reach, I asked for a comprehensive list of all the products we use in everyday life that are made from petrochemicals. Turns out, ChatGPT has some healthy boundaries, so it pushed back, only offering a slightly more detailed list of the categories produced from the first prompt.

Not to be deterred, I asked for additional examples. I didn’t want to continue getting spoon-fed 10 items at a time, so I asked for 200. Less than comprehensive, more than the crumbs I was getting.

In entertaining fashion, ChatGPT told me compiling a list of 200 items might be challenging, but that it could offer up 100. The brazen negotiation made me smile.

I complimented the list and nudged a bit, encouraging ChatGPT it could come up with another 100 items if it tried. Much like a teenager wishes to stave off further questioning from a nosy parent, ChatGPT proffered up a second response of 100 items–almost half of which were simply things before which it added the qualifier “synthetic.” Salty.

As my intention is not to bore you, but rather enhance the knowledge of our readers by understanding how pervasive petrochemical products are in our everyday life, I settled on a more direct inquiry with a capped demand prompt: “What would you say are the 10 most surprising things in common everyday use that contain petrochemical products?”

Most of the answers featured wax-based products, like lotions, crayons, and lipstick–not necessarily earth-shattering realizations given my familiarity with cosmetics as petroleum by-products. I was pleasantly surprised to learn that chewing gum, with its synthetic rubber base enabling theoretically endless chewing, is derived from petroleum. I was also surprised to learn that many artificial sweeteners, like saccharin and aspartame, are made from petrochemicals. Huh.

There was one item on the list, however, that helped me see how truly pervasive the energy industry is, and not just for petrochemicals. Tucked in nonchalantly at #6 was Deodorant. My brain jumped immediately to the waxy base of a solid sweat deterrent, but my eyes got a curveball. ChatGPT writes, “Many deodorants contain aluminum, which is often derived from bauxite, a mineral that is usually mined from the earth using petroleum-powered machinery.” Now that was an answer I wasn’t expecting.

While my initial inference stood true – the smooth glide of a buttery solid antiperspirant is without a doubt derived from petrochemicals (not to mention the plastic packaging surrounding it), I wasn’t expecting ChatGPT to rope in the oft petroleum-fueled tools used to make said product. If that’s true, then nearly every item on the planet is derived from petroleum. Or at the very least, some source of energy. Regardless of whether the machinery used runs on gasoline, electricity, or wind power, literally almost everything that is produced on this earth is related to the energy industry.

Even if it’s hand-made, it’s technically still energy-adjacent, assuming we all bathe regularly with soap, yet another on the list of commonly used items derived from petroleum by-products. It’s certainly directly powering some manual activities, for those busting stress and bad breath with gum, or drinking a diet soda to power through. No pun intended.

I share this amusing tale simply to clarify the ubiquitous nature of energy in all parts of the modern world. As we look toward the #futureofenergy, we must be cognizant of its universal reach. It’s not necessarily realistic to switch from one source of energy to another overnight, but we do have a responsibility to seek cleaner, healthier, more efficient sources of energy while sustaining the life to which we have all grown accustomed.

Much like ChatGPT thought she couldn’t come up with 200 items derived from petroleum products, many think Houston will be unable to drive the Energy Transition, given our extensive petroleum focus. But like so many fellow Houstonians before us, we love a good challenge.

Just keep prompting us, and we’ll eventually unlock infinite potential for the #futureofenergy. It’s a limitless time to be in Houston, absorbing wisdom the city so willingly wants to share with the growing ecosystem of innovators. Just ask the growing number of almost 5,000 Energy-related firms in Houston. We’re just getting started.

------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Investment bank opens energy-focused office in Houston

new to hou

Investment bank Cohen & Co. Capital Markets has opened a Houston office to serve as the hub of its energy advisory business and has tapped investment banking veteran Rahul Jasuja as the office’s leader.

Jasuja joined Cohen & Co. Capital Markets, a subsidiary of financial services company Cohen & Co., as managing director, and head of energy and energy transition investment banking. Cohen’s capital markets arm closed $44 billion worth of deals last year.

Jasuja previously worked at energy-focused Houston investment bank Mast Capital Advisors, where he was managing director of investment banking. Before Mast Capital, Jasuja was director of energy investment banking in the Houston office of Wells Fargo Securities.

“Meeting rising [energy] demand will require disciplined capital allocation across traditional energy, sustainable fuels, and firm, dispatchable solutions such as nuclear and geothermal,” Jasuja said in a news release. “Houston remains the center of gravity where capital, operating expertise, and execution come together to make that transition investable.”

The Houston office will focus on four energy verticals:

  • Energy systems such as nuclear and geothermal
  • Energy supply chains
  • Energy-transition fuel and technology
  • Traditional energy
“We are making a committed investment in Houston because we believe the infrastructure powering AI, defense, and energy transition — from nuclear to rare-earth technology — represents the next secular cycle of value creation,” Jerry Serowik, head of Cohen & Co. Capital Markets, added in the release.

Houston cleantech startup Helix Earth lands $1.2M NSF grant

federal funding

Renewable equipment manufacturer Helix Earth Technologies is one of three Houston-based companies to secure federal funding through the Small Business Innovation Research (SBIR) Phase II grant program in recent months.

The company—which was founded based on NASA technology, spun out of Rice University and has been incubated at Greentown Labs—has received approximately $1.2 million from the National Science Foundation to develop its high-efficiency retrofit dehumidification systems that aim to reduce the energy consumption of commercial AC units. The company reports that its technology has the potential to cut AC energy use by up to 50 percent.

"This award validates our vision and propels our impact forward with valuable research funding and the prestige of the NSF stamp of approval," Rawand Rasheed, Helix CEO and founder, shared in a LinkedIn post. "This award is a reflection our exceptional team's grit, expertise, and collaborative spirit ... This is just the beginning as we continue pushing for a sustainable future."

Two other Houston-area companies also landed $1.2 million in NSF SBIR Phase II funding during the same period:

  • Resilitix Intelligence, a disaster AI startup that was founded shortly after Hurricane Harvey, that works to "reduce the human and economic toll of disasters" by providing local and state organizations and emergency response teams with near-real-time, AI-driven insights to improve response speed, save lives and accelerate recovery
  • Conroe-based Fluxworks Inc., founded in 2021 at Texas A&M, which provides magnetic gear technology for the space industry that has the potential to significantly enhance in-space manufacturing and unlock new capabilities for industries by allowing advanced research and manufacturing in microgravity

The three grants officially rolled out in early September 2025 and are expected to run through August 2027, according to the NSF. The SBIR Phase II grants support in-depth research and development of ideas that showed potential for commercialization after receiving Phase I grants from government agencies.

However, congressional authority for the program, often called "America's seed fund," expired on September 30, 2025, and has stalled since the recent government shutdown. Government agencies cannot issue new grants until Congress agrees on a path forward. According to SBIR.gov, "if no further action is taken by Congress, federal agencies may not be able to award funding under SBIR/STTR programs and SBIR/STTR solicitations may be delayed, cancelled, or rescinded."

Mars Materials makes breakthrough in clean carbon fiber production

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.