Here's what you need yo know this week. Photo via Getty Images

Editor's note: It's a new week — start it strong with three quick things to know in Houston's energy transition ecosystem: Baker Hughes makes headlines for new hydrogen tech and grants, three people to know in energy, and more.

Who to know

Last week, EnergyCapital had three stories introducing you to key players within the energy transition:

  • Patrick Sullivan, president and of Hawaii-based Oceanit, explained the impact the company is having on the energy transition in Houston and beyond. Read more.
  • Ken Gilmartin, CEO of Wood, shared his company’s strategic mission for the future and their recent wins in the energy space that are driving the energy transition forward. Read more.
  • Tania Ortiz Mena was named president of Sempra Infrastructure, which is based in Houston. Read more.

What to attend

Here are two events not to miss this month. Photo via Getty Images

Put these upcoming events on your radar.

  • October 10-11 — SPRINT Robotics World Conference and Exhibition will show that many robots are in use and that the industry is accelerating and starting to scale. Learn more.
  • October 30-31 — Fuze is a must-attend event for executives, investors, and founders serious about solving the energy crisis and boosting company efficiency. Learn more.

Baker Hughes makes moves

Missed these storied about Baker Hughes? Photo courtesy of Baker Hughes

As you might have seen, Baker Hughes had two pieces of news last week.

Houston-based energy technology company Baker Hughes is rolling out two new products — pressure sensors for the hydrogen sector.

“Hydrogen plays a key role in the transition to a more sustainable, lower-emissions future but also poses challenges for infrastructure and equipment due to hydrogen embrittlement,” Gordon Docherty says. Read more.

Additionally, the Baker Hughes Foundation revealed details on a $75,000 grant to Houston Minority Supplier Development Council, or HMSDC, and a $100,000 grant to Washington, D.C.-based WEConnect International. HMSDC supports economic growth of minority-owned businesses, and WEConnect International is focused on women-owned companies. Read more.

Patrick Sullivan of Oceanit joins the Houston Innovators Podcast to share the potential he sees for Houston's energy ecosystem to transition efficiently. Photo courtesy of Oceanit

Why this entrepreneur sees a bright future for hydrogen innovation Houston's energy transition ecosystem

Q&A

While Patrick Sullivan lives on an island almost 4,000 miles away from Houston, the entrepreneur is no stranger to Houston's energy ecosystem.

Oceanit, founded in 1985 by Sullivan, is based in Hawaii, a portion of its customer base is based right here in Houston. Additionally, he opened his company's H2XCEL lab locally earlier this year.

“We are, indeed, in the middle of the sea, but we work around the world,” Sullivan, who serves as president and CEO of his company, says on the Houston Innovators Podcast. “What we do in Houston is interesting because we consider Houston the center of energy. And energy makes the world go around, and there’s just no two ways around it. Of course, there’s lots of transition going on, so it’s an exciting time to be doing energy.”

Learn more about Oceanit's presence in Houston and the impact the company is having on the energy transition in the podcast as well as the excerpt below.


EnergyCapital: What’s the opportunity you see with hydrogen?

Patrick Sullivan: The US has several millions of miles of methane pipelines, so if you start looking at loading hydrogen into those methane pipelines, you start displacing carbon. There are all sorts of interesting trade offs, but one of the challenges is this area called embrittlement. What that means is hydrogen is a little molecule, and when you put it next to a metal, sometimes it likes to hide in the metal, and over time, sometimes it builds up and then it can crack that metal. That’s called hydrogen embrittlement, and people are worried about that.

Turns out, we have developed a technology for a military application, and we can do things to metal without embrittlement. We’ve learned a lot over the years. We thought, what if we take what we’ve learned in the defense space and apply it to energy with the pipelines.

EC: What’s your goal with your new Houston-based H2XCEL lab that features your hydrogen embrittlement prevention technology?

PS: We can test those to failure right there in Houston. We’re talking to all the pipeline companies about getting their steel pipe and running through all these tests to show how it’s going to perform with all these different mixtures.

The idea is to get the community to see that when you integrate technology from different fields into the energy space, we can keep making progress.

It’s going to take time. But if we start reducing carbon and the use of fossil fuel today, we buy time for the planet.

EC: What’s the next big thing within tech that you’re working on? 

PS: It’s a really interesting question, there’s so much going on right now, it’s really an exciting time in the tech space and the reason is because the world has been asleep at the switch for a while in terms of real technology.

One of the things we’ve put a lot of time and effort into is artificial intelligence. Large language models are definitely entertaining and have tons of opportunities. They’ve have got their pros and cons. We’ve worked with Noam Chomsky for years now, and our approach is based on Chomskyan grammar. The idea of human cognition is linguistic competency. When you speak, you’re mathematically efficient. It’s not random, it’s how human brains are put together. We built a system based on that hypothesis.

I think the reason AI is going to get more airtime too is the social and political consequences of misinformation.

— — —

This conversation has been edited for brevity and clarity.

Oceanit's lab, H2XCEL — short for “Hydrogen Accelerator” — aims to integrate hydrogen into the current energy infrastructure, a serious cost-saver for companies looking to make the energy transition. Photo via Getty Images

New lab opens in Houston to help make pipelines safer for hydrogen transport

HOU-DRYGEN

An innovative Hawaii-based technology company is saying aloha to Houston with the opening of a unique test laboratory that aims to increase hydrogen pipeline safety. It is the latest sign that Houston is at the forefront of the movement to hydrogen energy.

The lab, H2XCEL — short for “Hydrogen Accelerator” — aims to integrate hydrogen into the current energy infrastructure, a serious cost-saver for companies looking to make the energy transition. Oceanit, a Honolulu-based technology company, is behind the lab.

H2XCEL will be the only lab in the U.S. capable of testing hydrogen and methane mixtures at high temperatures and pressures. Its aim is to protect pipelines from hydrogen embrittlement — when small hydrogen molecules penetrate pipe walls and damage the metal, potentially causing cracks, leaks, and failures.

The lab uses Oceanit’s HydroPel pipeline nanotechnology, developed with the support of the U.S. Department of Energy. Photo courtesy of Oceanit

“The launch of this testing facility is a major milestone. It is the only lab of its kind in the U.S. and the work underway at H2XCEL will accelerate the transition toward a hydrogen-driven economy,” Patrick Sullivan, the CEO and founder of Oceanit, says in a news release. “We see a toolset emerging that will enable the U.S. to accelerate toward a low-carbon future.”

Houston was the obvious choice to launch the new lab, says Oceanit’s Direct of Marketing James Andrews.

“Houston is the energy capital of the world," Andrews explains. "Oceanit knew that if we wanted to make inroads with decarbonization technologies, we needed to be physically present there.”

H2XCEL uses Oceanit’s HydroPel pipeline nanotechnology, developed with the support of the U.S. Department of Energy. It is a surface treatment that protects metals, eliminating the need to build new pipelines using expensive, hydrogen-resistant metals. The estimated cost of building new hydrogen pipelines is approximately $4.65 million per mile, according to a press release from the company. In contrast, HydroPel can be applied to existing pipelines to prevent damage, and the cost to refurbish one mile of existing steel pipeline is less than 10 percent of the cost per mile for new pipeline construction.

One of the main objectives of the new Houston lab will be to test hydrogen-methane blends under varying conditions to determine how to use HydroPel safely. By enabling the energy sector to reduce its climate impact while continuing to provide energy using existing infrastructure, methane-hydrogen blends capitalize on hydrogen’s carbon-free energy potential and its positive impact on climate change.

“We want to create a situation where we can speed up energy transition,” says Andrews. “By blending it into a safer environment, we can make it attractive to bigger players.”

Oceanit already has a Houston presence where the team is focused on several other technologies related to hydrogen, including HeatX, a water-based technology for heat transfer surfaces in refineries, power plants, and more, as well as their HALO system, which utilizes directed energy to produce clean hydrogen wastewater and other waste byproducts produced in industrial businesses.

A recent report issued by Rice University’s Baker Institute for Public Policy about the hydrogen economy

in Texas insists that the Lone Star State is an ideal hub for hydrogen as an energy source. The report explains that with the state’s existing oil and gas infrastructure, Texas is the best spot to affordably develop hydrogen while managing economic challenges. The Houston region already produces and consumes a third of the nation’s hydrogen, according to the report, and has more than 50 percent of the country’s dedicated hydrogen pipelines.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based ENGIE to add new wind and solar projects to Texas grid

coming soon

Houston-based ENGIE North America Inc. has expanded its partnership with Los Angeles-based Ares Infrastructure Opportunities to add 730 megawatts of renewable energy projects to the ERCOT grid.

The new projects will include one wind and two solar projects in Texas.

“The continued growth of our relationship with Ares reflects the strength of ENGIE’s portfolio of assets and our track record of delivering, operating and financing growth in the U.S. despite challenging circumstances,” Dave Carroll, CEO and Chief Renewables Officer of ENGIE North America, said in a news release. “The addition of another 730 MW of generation to our existing relationship reflects the commitment both ENGIE and Ares have to meeting growing demand for power in the U.S. and our willingness to invest in meeting those needs.”

ENGIE has more than 11 gigawatts of renewable energy projects in operation or under construction in the U.S. and Canada, and 52.7 gigawatts worldwide. The company is targeting 95 gigawatts by 2030.

ENGIE launched three new community solar farms in Illinois since December, including the 2.5-megawatt Harmony community solar farm in Lena and the Knox 2A and Knox 2B projects in Galesburg.

The company's 600-megawatt Swenson Ranch Solar project near Abilene, Texas, is expected to go online in 2027 and will provide power for Meta, the parent company of social media platform Facebook. Late last year, ENGIE also signed a nine-year renewable energy supply agreement with AstraZeneca to support the pharmaceutical company’s manufacturing operations from its 114-megawatt Tyson Nick Solar Project in Lamar County, Texas.

Houston geothermal company raises $97M Series B

fresh funding

Houston-based geothermal energy startup Sage Geosystems has closed its Series B fundraising round and plans to use the money to launch its first commercial next-generation geothermal power generation facility.

Ormat Technologies and Carbon Direct Capital co-led the $97 million round, according to a press release from Sage. Existing investors Exa, Nabors, alfa8, Arch Meredith, Abilene Partners, Cubit Capital and Ignis H2 Energy also participated, as well as new investors SiteGround Capital and The UC Berkeley Foundation’s Climate Solutions Fund.

The new geothermal power generation facility will be located at one of Ormat Technologies' existing power plants. The Nevada-based company has geothermal power projects in the U.S. and numerous other countries around the world. The facility will use Sage’s proprietary pressure geothermal technology, which extracts geothermal heat energy from hot dry rock, an abundant geothermal resource.

“Pressure geothermal is designed to be commercial, scalable and deployable almost anywhere,” Cindy Taff, CEO of Sage Geosystems, said in the news release. “This Series B allows us to prove that at commercial scale, reflecting strong conviction from partners who understand both the urgency of energy demand and the criticality of firm power.”

Sage reports that partnering with the Ormat facility will allow it to market and scale up its pressure geothermal technology at a faster rate.

“This investment builds on the strong foundation we’ve established through our commercial agreement and reinforces Ormat’s commitment to accelerating geothermal development,” Doron Blachar, CEO of Ormat Technologies, added in the release. “Sage’s technical expertise and innovative approach are well aligned with Ormat’s strategy to move faster from concept to commercialization. We’re pleased to take this natural next step in a partnership we believe strongly in.”

In 2024, Sage agreed to deliver up to 150 megawatts of new geothermal baseload power to Meta, the parent company of Facebook. At the time, the companies reported that the project's first phase would aim to be operating in 2027.

The company also raised a $17 million Series A, led by Chesapeake Energy Corp., in 2024.

Houston expert discusses the clean energy founder's paradox

Guest Column

Everyone tells you to move fast and break things. In clean energy, moving fast without structural integrity means breaking the only planet we’ve got. This is the founder's paradox: you are building a company in an industry where the stakes are existential, the timelines are glacial, and the capital requires patience.

The myth of the lone genius in a garage doesn’t really apply here. Clean energy startups aren’t just fighting competitors. They are fighting physics, policy, and decades of existing infrastructure. This isn’t an app. You’re building something physical that has to work in the real world. It has to be cheaper, more reliable, and clearly better than fossil fuels. Being “green” alone isn’t enough. Scale is what matters.

Your biggest risks aren’t competitors. They’re interconnection delays, permitting timelines, supply chain fragility, and whether your first customer is willing to underwrite something that hasn’t been done before.

That reality creates a brutal filter. Successful founders in this space need deep technical knowledge and the ability to execute. You need to understand engineering, navigate regulation, and think in terms of markets and risk. You’re not just selling a product. You’re selling a future where your solution becomes the obvious choice. That means connecting short-term financial returns with long-term system change.

The capital is there, but it’s smarter and more demanding. Investors today have PhDs in electrochemistry and grid dynamics. They’ve been burned by promises of miracle materials that never left the lab. They don't fund visions; they fund pathways to impact that can scale and make financial sense. Your roadmap must show not just a brilliant invention, but a clear, believable plan to drive costs down over time.

Capital in this sector isn’t impressed by ambition alone. It wants evidence that risk is being retired in the right order — even if that means slower growth early.

Here’s the upside. The difficulty of clean energy is also its strength. If you succeed, your advantage isn’t just in software or branding. It’s in hardware, supply chains, approvals, and years of hard work that others can’t easily copy. Your real competitors aren’t other startups. They’re inertia and the existing system. Winning here isn’t zero-sum. When one solution scales, it helps the entire market grow.

So, to the founder in the lab, or running field tests at a remote site: your pace will feel slow. The validation cycles are long. But you are building in the physical world. When you succeed, you don’t have an exit. You have a foundation. You don't just have customers; you have converts. And the product you ship doesn't just generate revenue; it creates a legacy.

If your timelines feel uncomfortable compared to software, that’s because you’re operating inside a system designed to resist change. And let’s not forget you are building actual physical products that interact with a complex world. Times are tough. Don’t give up. We need you.

---

Nada Ahmed is the founding partner at Houston-based Energy Tech Nexus.