The future of transportation fuels will be shaped by a mix of innovation, government policies, and what consumers want. Photo by Engin Akyurt/Pexels

Gasoline, diesel, bunker fuel, and jet fuel. Four liquid hydrocarbons that have been powering transportation for the last 100-plus years.

Gas stations, truck stops, ports, and airport fuel terminals have been built up over the last century to make transportation easy and reliable.

These conventional fuels release Greenhouse Gases (GHG) when they are used, and governments all over the world are working on plans to shift towards cleaner fuels in an effort to lower emissions and minimize the effects of climate change.

For passenger cars, it’s clear that electricity will be the cleaner fuel type, with most countries adopting electric vehicles (EVs), and in some cases, providing their citizens with incentives to make the switch.

While many articles have been written about EVs and the benefits that come along with them, they fail to look at the transportation system as a whole.

Trucks, cargo ships, and airplanes are modes of transportation that are used every day, but they don’t often get the spotlight like EVs do.

For governments to be effective in curbing transportation-related greenhouse emissions, they must consider all forms of transportation and cleaner fuel options for them as well.

43 percent of GHG emissions comes from these modes of transportation. Therefore, using electricity to reduce GHG emissions in light duty vehicles only accounts for part of the total transportation emissions equation.

The path to cleaner fuels for these transportation modes has its challenges.

According to Ed Emmett, Fellow in Energy and Transportation Policy at the Baker Institute Center for Energy Studies (CES);

  • "Airplanes cannot be realistically powered by electricity, at least not currently, and handle the same requisite freight and passenger loads"
  • "The long-haul trucking industry [...] pushed back against electrification as being impractical due to the size and weight of batteries, their limited range, and the cost of adoption"
  • "Shipowners have expressed reluctance to scrap existing bunker fueled ships for newer, more expensive ships, especially when other fueling options, e.g. biofuels and hydrocarbon derivatives-for fleets can be made available"

Finding low-cost, reliable, and environmentally sound fuels for the various segments of transportation is complex. As Emmett suggests in his latest article;

"Hovering over the transition to other fuels for almost every transportation mode is the question of dependability of supply. For the trucking industry, the truck stop industry must be able to adapt to new fuel requirements. For ocean shipping, ports must be able to meet the fuel needs of new ships. Airlines, air cargo carriers and airports need to be on the same page when it comes to aviation fuels. In other words, the adoption equation in transitions in transportation is not only a function of the availability and cost of the new technology but also a function of the cost of the full supply chain needed to support fuel production and delivery to the point of use. Going forward, the transportation industry is facing a dilemma: How are environmental concerns addressed while simultaneously maintaining operational efficiency and avoiding unnecessary upward cost shifts for moving goods and people? In answering that question, for the first time in history, modes of transportation may end up going in multiple different directions when it comes to the fuels each mode ultimately chooses."

This is why many forecasts predict that hydrocarbon demand will continue through 2050, despite ambitious aspirations of achieving net zero emissions by that year. The McKinsey "slow evolution" scenario has global liquid hydrocarbon demand in 2050 at 92mmb/d versus 103 mmb/d in 2023. With their "continued momentum" scenario, oil demand is 75 mmb/d. Proportionally, global oil demand related to GHG emissions from transportation would decline 11-27 percent. The global uptake of EVs is the primary driver of uncertainty around future oil demand. In all the McKinsey scenarios, the share of EVs in passenger cars sales is expected to be above 90 percent by 2050.

The Good News

Despite the relatively slow progress expected for reducing GHG emissions in the global transportation sector, there are solutions emerging that lower the carbon footprint tied to traditional petroleum-based fuels. Emmett highlights some of the methods under study, noting that "sustainable biofuels sourced from cooking oils, animal fats, and agriculture products, as well as hydrogen, methanol, ammonia, and various e-fuels are among the options being tested. Some ocean carriers are already ordering ships powered by liquified natural gas, bio-e-methanol, bio/e-methane, ammonia, and hydrogen. Airlines are already using sustainable aviation fuel as a supplement to basic aviation fuel. Railroads are testing hydrogen locomotives. The trucking industry is decarbonizing local delivery by using vehicles powered by electricity, compressed natural gas, and sustainable diesel. Long-haul trucking companies are considering sustainable diesel as a drop-in fuel for existing equipment, and fuel suppliers are researching new engines fueled by hydrogen and other alternative fuels."

Most of these options will require a combination of increased government incentives, along with advancements in technology and cost reductions.

McKinsey's "sustainable transformation" scenario, which considers potential shifts in government regulations as well as advancements in technology and cost, suggests there is moderate growth in alternative fuels alongside growth in EVs. Mckinsey projects;

  • EV demand could grow to over 90 percent of total passenger car sales by 2050
  • EVs to make up around 80 percent of commercial truck sales by 2050
  • In aviation, low carbon fuels such as biofuels, synfuels, hydrogen and electricity are projected to grow to 49 percent by 2050.

According to McKinsey, the combination of these alternatives along with demand changes in power and chemicals could reduce global oil demand to 60 mmb/d in 2050. The shift to cleaner fuels, for modes of transportation other than EVs, is underway but the progress and adoption will take decades to achieve according to McKinsey’s forecasts.

Looking more closely at EVs, the story may not be as dire globally as it seems to be in the West. While the U.S. appears to be losing momentum on electric vehicle adoption, China is roaring ahead. New electric car registrations in China reached 8.1 million in 2023, increasing by 35 percent relative to 2022. McKinsey’s forecasts have underestimated global EV sales in the past, with China surpassing their estimates, while the U.S. lags behind. It’s clear that China is the winner in EV adoption; could they also lead the way to adopt cleaner fuels for other modes of transport? That is something governments and the transportation industry will be watching in the years ahead.

Conclusion

While we are not on a trajectory to meet the aspirations to reduce global GHG emissions in the transportation sector, there are emerging solutions that could be adopted should governments around the world decide to put in place the incentives to get there. Moving forward, the future of transportation fuels will be shaped by a mix of innovation, government policies, and what consumers want. The focus will be on ensuring that the transportation sector remains reliable, secure, and economically robust, while also reducing GHG emissions. But, decarbonizing the transportation sector is much more than just EV's – it's a broader effort that will require continued global progress in each of the multiple transportation segments.

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on October 9, 2024.

It's the first time the company has used EVs in any of its upstream sites, including the Permian Basin. Photo via exxonmobil.com

ExxonMobil revs up EV pilot in Permian Basin

seeing green

ExxonMobil has upgraded its Permian Basin fleet of trucks with sustainability in mind.

The Houston-headquartered company announced a new pilot program last week, rolling out 10 new all-electric pickup trucks at its Cowboy Central Delivery Point in southeast New Mexico. It's the first time the company has used EVs in any of its upstream sites, including the Permian Basin.

“We expect these EV trucks will require less maintenance, which will help reduce cost, while also contributing to our plan to achieve net zero Scope 1 and 2 emissions in our Permian operations by 2030," Kartik Garg, ExxonMobil's New Mexico production manager, says in a news release.

ExxonMobil has already deployed EV trucks at its facilities in Baytown, Beaumont, and Baton Rouge, but the Permian Basin, which accounts for about half of ExxonMobil's total U.S. oil production, is a larger site. The company reports that "a typical vehicle there can log 30,000 miles a year."

The EV rollout comes after the company announced last year that it plans to be a major supplier of lithium for EV battery technology.

At the end of last year, ExxonMobil increased its financial commitment to implementing more sustainable solutions. The company reported that it is pursuing more than $20 billion of lower-emissions opportunities through 2027.

Cowboys and the EVs of the Permian Basin | ExxonMobilyoutu.be

As the world becomes more reliant on renewable energy, artificial intelligence is proving to be a major game-changer. Photo via Getty Images

How AI technology is advancing a low-carbon future

the view from heti

In the midst of a continuously changing global energy landscape, industry experts, leading energy companies and corporations have rallied together for one common goal: to reach net zero by 2050. As the demand for energy increases, so does the urgency to develop more energy efficient technologies that reduce emissions.

As the world becomes more reliant on renewable energy, artificial intelligence is proving to be a major game-changer. AI is one of the world’s largest disruptors in tech to date with some tech giants pouring millions into research surrounding AI technologies.

While artificial intelligence may not be the first thing to come to mind when talking about the energy industry, it’s already proven its value in fueling the energy transition in multiple domains: improving renewable energy forecasting, grid operations, materials innovation and more. Companies like Accenture have shown how artificial intelligence can play a huge role in steering the energy transition toward a more efficient future.

As a technology services provider, Accenture bridges the gap between technology and human ingenuity to solve some of the world’s most complex issues. With more than 15 years of leadership in metaverse-related technology and more than 1,400 patents, the Accenture Metaverse team brings together metaverse-skilled professionals and market-leading capabilities across Accenture.

The Dublin, Ireland-based company recently announced plans to invest more than $3 billion in artificial intelligence and double its AI-related staff to accommodate demands. Accenture also plans to use generative AI for client work and launch an AI Navigator for Enterprise platform to help guide AI strategy, use cases, decision-making and policy.

With decades of investments and patents, Accenture is no stranger to AI. The company also recently introduced their Net Zero Metaverse, an immersive experience that allows users to explore the future of energy, at the third annual Future of Global Energy conference hosted by the Greater Houston Partnership and the Houston Energy Transition Initiative presented by Chevron. The innovative software system consists of multiple digital worlds including a Charge Stations of the Future, Energy Transition Igloo, a Space Lab and Hydrogen Heights, a renewable-powered neighborhood named after The Heights of Houston.

While Accenture is helping to shift to a more sustainable future, three ways that AI software has already transformed the way we generate, distribute and consume energy are through smart grids, optimized electricity consumption and electricity mobility.

Smart Grids
AI technology can help optimize the efficiency of smart grids, reducing the number of outages and mitigating impact for both residential and commercial customers. In its ability to analyze data collected by smart grids, AI can predict the demand of energy and adjust the flow of electricity accordingly.

Optimized electricity consumption
According to the World Economic Forum, reducing carbon emissions in buildings will be critical to achieving net zero emissions by 2050; buildings represent 39% of global greenhouse gas emissions. AI powered smart buildings and homes can help to reduce energy consumption and operating costs. With the ability to analyze data from sensors and other sources, AI software can identify patterns, predict equipment failures and maintenance needs and help building managers schedule maintenance repairs more efficiently.

Electricity mobility
According to the Congressional Budget Office, transportation is the largest source of greenhouse gas emissions in the United States with CO2 emissions representing about 97% of the global warming potential of all greenhouse emissions. AI software plays a key role in monitoring driving conditions, speed and load levels predicting the most efficient way to use available energy. AI software also helps in safety management and aids in the race to a pollution-free eco-friendly environment.

While AI technology is still advancing, and there is uncertainty in its accuracy, this breakthrough technology is shaping the future of society offering new approaches to optimize energy systems’ operation and reliability.

Learn more about what companies like Accenture are doing with AI technologies.

------------

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Navigating the energy transition is a relay race, and the baton is in Houston, says this energy executive. Photo courtesy of SCS

O&G exec: Houston is where the future of energy is taking shape

Q&A

Earlier this month, a West Texas-based oilfield equipment provider announced that it was opening an office in the Ion Houston. It's all a part of the company's energy transition plan.

SCS Technologies, based in Big Spring, Texas, has a new strategy and innovation-focused office in the Ion, the company announced last week. The company, which provides CO2 capture measurement and methane vapor recovery equipment for the energy, industrial, and environmental sectors, also announced René Vandersalm as the new COO.

These are just the latest moves for the company as the world moves away from hydrocarbons and toward a greener future, CEO Cody Johnson tells EnergyCapital, explaining that he recognizes Houston has a role in the energy transition.

"This is a relay race – a race that has already started," he says. "Houston is the place where the baton will be handed off – it’s the place where the race is occurring. SCS Technologies is determined to be part of this solution dreamed of and planned in Houston and then executed in the Permian Basin, where we call home."

In an interview with EnergyCapital, Johnson weighs in on the new office and the future of his company.

EnergyCapital: How has SCS’s business evolved amid the energy transition?

Cody Johnson: SCS Technologies was founded to design and fabricate customized Lease Automated Custody Transfer units in the Permian Basin. These LACT units were used primarily to measure the quality and quantity of crude oil at all points of custody transfer. Essentially, SCS Technologies produced the premier "crude cash registers" for the Permian Basin.

As the oil and gas industry has adapted into the energy transition industry, our customers and the communities we operate in have a growing need for SCS Technologies to use our design and fabrication of measurement skids to measure the quality and quantity of CO2 or to design and fabricate methane — and other vent gases — Vapor Recovery Units. SCS Technologies’ design and fabrication expertise in measurement skids, pump skids, and compression skids, coupled with our Permian Basin based training and fabrication campus, ideally positioned us to answer the call to fill the expertise and capacity gap.

EC: How are you preparing for the future of energy?

CJ: Society has been powered for the past 100 years or so by the management of hydrocarbon molecules. The essential tools for that have been and continue to be oil rigs, pipelines, and refineries in large part. This has given society many benefits but at a price to the environment that isn’t sustainable. Over the next 50 years, society will complete a transition away from managing hydrocarbon molecules and towards managing electrons. Those electrons are created by wind, solar, geothermal, or nuclear processes and travel down copper wires. Managing this transition that is already occurring and working together to do it in the near-term future of energy.

As we execute this transition over the next several decades from managing molecules to managing electrons to provide energy, molecule management companies must find ways to reach net zero emissions in their management practices. This means primarily capturing and managing methane vapors and capturing and sequestering CO2. This is starting in 2023 in a meaningful way and needs to continue past 2030 and probably past 2050 to have any chance to meet the globally shared social goal to achieve net zero emissions by 2050 and stay below a maximum increase of 1.5 degrees C in global temperatures.

The clock is ticking, and we are behind. The largest molecule management infrastructure investment in history must happen for us to reach these goals. It's mission-critical as one of the three things we simply cannot fail at to achieve net zero by 2050. SCS Technologies is very focused on being an intentional part of the tremendous supply chain buildout to support the infrastructure buildout.

EC: How does the new office in the Ion support these plans?


CJ: SCS Technologies needs to collaborate with the brightest minds working on the energy transition challenges. To contribute meaningfully to the overall effort and to be the thought leader in the methane vapor recovery and CO2 compression and measurement niche, we need to be at the heart of the energy transition collaboration community. That beating heart is the Ion in Houston.

EC: What role does your new COO, René Vandersalm, play in SCS evolving with the energy transition?


CJ: René is a proven executive in growing mission-critical design and fabrication capacity without sacrificing quality. René’s experience, capabilities, and global network will play a key role in our path forward.

EC: Based in West Texas, SCS has a growing presence in Houston. Why do you see Houston as a leader in the energy transition?

CJ: West Texas has an amazing group of oil and gas professionals and infrastructure. We are proud of that heritage and will always maintain our roots and foundation there. Houston has the only community of engineers, scientists, universities, companies, investors, and key professional service providers that can deliver on the buildout of the molecule management infrastructure required to buy the electron management infrastructure folks time to transition fully to green energy after 2050.

This is a relay race – a race that has already started. Houston is the place where the baton will be handed off – it’s the place where the race is occurring. SCS Technologies is determined to be part of this solution dreamed of and planned in Houston and then executed in the Permian Basin, where we call home.

------

This conversation has been edited for brevity and clarity.

The world can't keep on with what it's doing and expect to reach its goals when it comes to climate change. Radical innovations are needed at this point, writes Scott Nyquist. Photo via Getty Images

Only radical innovation can get the world to its climate goals, says this Houston expert

guest column

Almost 3 years ago, McKinsey published a report arguing that limiting global temperature rises to 1.5 degrees Celsius above pre-industrial levels was “technically achievable,” but that the “math is daunting.” Indeed, when the 1.5°C figure was agreed to at the 2015 Paris climate conference, the assumption was that emissions would peak before 2025, and then fall 43 percent by 2030.

Given that 2022 saw the highest emissions ever—36.8 gigatons—the math is now more daunting still: cuts would need to be greater, and faster, than envisioned in Paris. Perhaps that is why the Intergovernmental Panel on Climate Change (IPCC) noted March 20 (with “high confidence”) that it was “likely that warming will exceed 1.5°C during the 21st century.”

I agree with that gloomy assessment. Given the rate of progress so far, 1.5°C looks all but impossible. That puts me in the company of people like Bill Gates; the Economist; the Australian Academy of Science, and apparently many IPCC scientists. McKinsey has estimated that even if all countries deliver on their net zero commitments, temperatures will likely be 1.7°C higher in 2100.

In October, the UN Environment Program argued that there was “no credible pathway to 1.5°C in place” and called for “an urgent system-wide transformation” to change the trajectory. Among the changes it considers necessary: carbon taxes, land use reform, dietary changes in which individuals “consume food for environmental sustainability and carbon reduction,” investment of $4 trillion to $6 trillion a year; applying current technology to all new buildings; no new fossil fuel infrastructure. And so on.

Let’s assume that the UNEP is right. What are the chances of all this happening in the next few years? Or, indeed, any of it? President Obama’s former science adviser, Daniel Schrag, put it this way: “ Who believes that we can halve global emissions by 2030?... It’s so far from reality that it’s kind of absurd.”

Having a goal is useful, concentrating minds and organizing effort. And I think that has been the case with 1.5°C, or recent commitments to get to net zero. Targets create a sense of urgency that has led to real progress on decarbonization.

The 2020 McKinsey report set out how to get on the 1.5°C pathway, and was careful to note that this was not a description of probability or reality but “a picture of a world that could be.” Three years later, that “world that could be” looks even more remote.

Consider the United States, the world’s second-largest emitter. In 2021, 79 percent of primary energy demand (see chart) was met by fossil fuels, about the same as a decade before. Globally, the figures are similar, with renewables accounting for just 12.5 percent of consumption and low-emissions nuclear another 4 percent. Those numbers would have to basically reverse in the next decade or so to get on track. I don’t see how that can happen.

No alt text provided for this image

Credit: Energy Information Administration

But even if 1.5°C is improbable in the short term, that doesn’t mean that missing the target won’t have consequences. And it certainly doesn’t mean giving up on addressing climate change. And in fact, there are some positive trends. Many companies are developing comprehensive plans for achieving net-zero emissions and are making those plans part of their long-term strategy. Moreover, while global emissions grew 0.9 percent in 2022, that was much less than GDP growth (3.2 percent). It’s worth noting, too, that much of the increase came from switching from gas to coal in response to the Russian invasion of Ukraine; that is the kind of supply shock that can be reversed. The point is that growth and emissions no longer move in lockstep; rather the opposite. That is critical because poorer countries are never going to take serious climate action if they believe it threatens their future prosperity.

Another implication is that limiting emissions means addressing the use of fossil fuels. As noted, even with the substantial rise in the use of renewables, coal, gas, and oil are still the core of the global energy system. They cannot be wished away. Perhaps it is time to think differently—that is, making fossil fuels more emissions efficient, by using carbon capture or other technologies; cutting methane emissions; and electrifying oil and gas operations. This is not popular among many climate advocates, who would prefer to see fossil fuels “stay in the ground.” That just isn’t happening. The much likelier scenario is that they are gradually displaced. McKinsey projects peak oil demand later this decade, for example, and for gas, maybe sometime in the late 2030s. Even after the peak, though, oil and gas will still be important for decades.

Second, in the longer term, it may be possible to get back onto 1.5°C if, in addition to reducing emissions, we actually remove them from the atmosphere, in the form of “negative emissions,” such as direct air capture and bioenergy with carbon capture and storage in power and heavy industry. The IPCC itself assumed negative emissions would play a major role in reaching the 1.5°C target; in fact, because of cost and deployment problems, it’s been tiny.

Finally, as I have argued before, it’s hard to see how we limit warming even to 2°C without more nuclear power, which can provide low-emissions energy 24/7, and is the largest single source of such power right now.

None of these things is particularly popular; none get the publicity of things like a cool new electric truck or an offshore wind farm (of which two are operating now in the United States, generating enough power for about 20,000 homes; another 40 are in development). And we cannot assume fast development of offshore wind. NIMBY concerns have already derailed some high-profile projects, and are also emerging in regard to land-based wind farms.

Carbon capture, negative emissions, and nuclear will have to face NIMBY, too. But they all have the potential to move the needle on emissions. Think of the potential if fast-growing India and China, for example, were to develop an assembly line of small nuclear reactors. Of course, the economics have to make sense—something that is true for all climate-change technologies.

And as the UN points out, there needs to be progress on other issues, such as food, buildings, and finance. I don’t think we can assume that such progress will happen on a massive scale in the next few years; the actual record since Paris demonstrates the opposite. That is troubling: the IPCC notes that the risks of abrupt and damaging impacts, such as flooding and crop yields, rise “with every increment of global warming.” But it is the reality.

There is one way to get us to 1.5°C, although not in the Paris timeframe: a radical acceleration of innovation. The approaches being scaled now, such as wind, solar, and batteries, are the same ideas that were being discussed 30 years ago. We are benefiting from long-term, incremental improvements, not disruptive innovation. To move the ball down the field quickly, though, we need to complete a Hail Mary pass.

It’s a long shot. But we’re entering an era of accelerated innovation, driven by advanced computing, artificial intelligence, and machine learning that could narrow the odds. For example, could carbon nanotubes displace demand for high-emissions steel? Might it be possible to store carbon deep in the ocean? Could geo-engineering bend the curve?

I believe that, on the whole, the world is serious about climate change. I am certain that the energy transition is happening. But I don’t think we are anywhere near to being on track to hit the 1.5°C target. And I don’t see how doing more of the same will get us there.

------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

There's no silver bullet for clean energy. We need an all-hands-on-deck approach, writes Scott Nyquist. Photo via Getty Images

Houston expert: When it comes to the future of energy and climate, think 'all of the above'

guest column

People in the energy industry don’t have the Oscars. For us, the big event of the year is CERAWeek — a conference stuffed with CEOs, top policymakers, and environmental and energy wonks held annually in March.

CERAWeek 2022, with the theme“Pace of Change: Energy, Climate, and Innovation," meant the return of in-person activations, panels, and networking. Walking and talking between sessions and around the coffee table, it occurred to me that the unofficial theme of the event was “Maybe now we can find middle ground on energy.” This idea came up time and time again, from all kinds of people.

As with too many other issues, the discussion of the future of US energy has become polarized. On one end of the spectrum are those who want everything renewable and/or electrified by ….. last week, whatever the cost. Their mantra for fossil fuels: “Keep them in the ground.”

On the other end, are those who dismiss climate change, saying we can always adapt and that it doesn’t much matter, anyway. Just keep digging and drilling and mining as we have always done. And in the middle are the great majority of Americans who are not passionate either way, but want to be responsible consumers, and also to be able to visit grandma without breaking the bank.

I believe that the transition toward an energy system that is cleaner and less reliant on fossil fuels is realand will ultimately bring substantial benefits. At the same time, I believe that energy security and economics also matter. At a time when inflation was already running high, paying an average of $4.25 a gallon at the pump is piling pain on tens of millions of US households. Ultimately, over decades, the use of electric vehicles will reduce the need for oil and that lower-emissions sources, including renewables, will provide a larger share of the power supply, which today depends largely on gas and coal. But that moment is not now, or next week. Indeed, fossil fuels continue to account for almost 80 percent of US primary energy consumption, and a similar figure globally.

Here is one way to think about the interplay between the energy transition and energy security: “We need an energy strategy for the future—an all-of-the-above strategy for the 21st century that develops every source of American-made energy.” No, that isn’t some apologist for Big Oil; it was President Obama. In 2014, the Obama White House also noted the role of US domestic oil and gas production in enhancing economic resilience and reducing vulnerability to oil shocks. In short, the White House argued, US oil and gas production can bring real benefits for the country. I think that is still true.

Does that mean throwing in the towel on the energy transition and climate change? Absolutely not. There are a variety of ways to pursue the goal of reducing emissions and eventually getting to net-zero emissions. I’ve touched on many of them in previous posts—including reducing methane emissions,pricing carbon, hydrogen, renewables, electric vehicles, urban planning, carbon capture, and negative emissions technologies. In other words, an “all of the above strategy” makes sense in this regard, too.

I don’t know how, or if, a middle ground can be captured. But from what I heard at CERAWeek last year, from people of otherwise widely divergent views, there just may be momentum to get there. A middle-ground consensus rests on three premises. First, we need fossil fuels for energy security and reliability now and until the time when technologies are in place to secure the energy transition. Second, at the same time, we need to be investing in the energy transition because climate change is real and matters. And third, for sustained and systematic progress, government and industry need to work together.

Or, in a phrase, “all of the above.”

------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Innovative Houston clean hydrogen company expands to Brazil

on the move

Houston biotech company Cemvita has expanded into Brazil. The company officially established a new subsidiary in the country under the same name.

According to an announcement made earlier this month, the expansion aims to capitalize on Brazil’s progressive regulatory framework, including Brazil’s Fuel of the Future Law, which was enacted in 2024. The company said the expansion also aims to coincide with the 2025 COP30, the UN’s climate change conference, which will be hosted in Brazil in November.

Cemvita utilizes synthetic biology to transform carbon emissions into valuable bio-based chemicals.

“For decades Brazil has pioneered the bioeconomy, and now the time has come to create the future of the circular bioeconomy,” Moji Karimi, CEO of Cemvita, said in a news release. “Our vision is to combine the innovation Cemvita is known for with Brazil’s expertise and resources to create an ecosystem where waste becomes opportunity and sustainability drives growth. By joining forces with Brazilian partners, Cemvita aims to build on Brazil’s storied history in the bioeconomy while laying the groundwork for a circular and sustainable future.”

The Fuel of the Future Law mandates an increase in the biodiesel content of diesel fuel, starting from 15 percent in March and increasing to 20 percent by 2030. It also requires the adoption of Sustainable Aviation Fuel (SAF) and for domestic flights to reduce greenhouse gas emissions by 1 percent starting in 2027, growing to 10 percent reduction by 2037.

Cemvita agreed to a 20-year contract that specified it would supply up to 50 million gallons of SAF annually to United Airlines in 2023.

"This is all made possible by our innovative technology, which transforms carbon waste into value,” Marcio Da Silva, VP of Innovation, said in a news release. “Unlike traditional methods, it requires neither a large land footprint nor clean freshwater, ensuring minimal environmental impact. At the same time, it produces high-value green chemicals—such as sustainable oils and biofuels—without competing with the critical resources needed for food production."

In 2024, Cemvita became capable of generating 500 barrels per day of sustainable oil from carbon waste at its first commercial plant. As a result, Cemvita quadrupled output at its Houston plant. The company had originally planned to reach this milestone in 2029.

Capitalism and climate: How financial shifts will shape our behavior

guest column

I never imagined I would see Los Angeles engulfed in flames in this way in my lifetime. As someone who has devoted years to studying climate science and advocating for climate technology solutions, I'm still caught off guard by the immediacy of these disasters. A part of me wants to believe the intensifying hurricanes, floods, and wildfires are merely an unfortunate string of bad luck. Whether through misplaced optimism or a subconscious shield of denial, I hadn't fully processed that these weren't just harbingers of a distant future, but our present reality. The recent fires have shattered that denial, bringing to mind the haunting prescience of the movie Don't Look Up. Perhaps we aren't as wise as we fancy ourselves to be.

The LA fires aren't an isolated incident. They're part of a terrifying pattern: the Canadian wildfires that darkened our skies, the devastating floods in Spain and Pakistan, and the increasingly powerful hurricanes in the Gulf. A stark new reality is emerging for climate-vulnerable cities, and whether we acknowledge the underlying crisis or not, climate change is making its presence felt – not just in death and destruction, but in our wallets.

The insurance industry, with its cold actuarial logic, is already responding. Even before the recent LA fires, major insurers like State Farm and Allstate had stopped writing new home policies in California, citing unmanageable wildfire risks. In the devastated Palisades area, 70% of homes had lost their insurance coverage before disaster struck. While some homeowners may have enrolled in California's limited FAIR plan, others likely went without coverage. Now, the FAIR plan faces $5.9 billion in potential claims, far exceeding its reinsurance backup – a shortfall that promises delayed payments and costlier coverage.

The insurance crisis is reverberating across the nation, and Houston sits squarely in its path. As a city all too familiar with the destructive power of extreme weather, we're experiencing our own reckoning. The Houston Chronicle recently reported that local homeowners are paying a $3,740 annually for insurance – nearly triple the national average and 60% higher than the Texas state average. Our region isn't just listed among the most expensive areas for home insurance; it's identified as one of the most vulnerable to climate hazards.

For Houston homeowners, Hurricane Harvey taught us a harsh lesson: flood zones are merely suggestions, not guarantees. The next major hurricane won't respect the city's floodplain designations. This reality poses a sobering question: Would you risk having your largest asset – your home – uninsured when flooding becomes increasingly likely in the next decade or two?

For most Americans, home equity represents one of the largest components of household wealth, a crucial stepping stone to financial security and generational advancement. Insurance isn't just about protecting physical property; it's about preserving the foundation of middle-class economic stability. When insurance becomes unavailable or unaffordable, it threatens the very basis of financial security for millions of families.

The insurance industry's retreat from vulnerable markets – as evidenced by Progressive and Foremost Insurance's withdrawal from writing new policies in Texas – is more than a business decision. It's a market signal. These companies are essentially pricing in the reality of climate change, whether we choose to call it that or not.

What we're witnessing is the market beginning to price us out of areas where we've either built unsustainably or perhaps should never have built at all. This isn't just about insurance rates; it's about the future viability of entire communities and regional economies. The invisible hand of the market is doing what political will has failed to do: forcing us to confront the true costs of our choices in a warming world.

Insurance companies aren't the only ones sounding the alarm. Lenders and investors are quietly rewriting the rules of capital access based on climate risk. Banks are adjusting mortgage terms and raising borrowing costs in vulnerable areas, while major investment firms are factoring carbon intensity into their lending decisions. Companies with higher environmental risks have faced higher loan spreads and borrowing costs – a trend that's accelerating as climate impacts intensify. This financial reckoning is creating a new economic geography, where access to capital increasingly depends on climate resilience.

The insurance crisis is the canary in the coal mine, warning us of the systemic risks ahead. As actuaries and risk managers factor climate risks into their models, we're seeing the beginning of a profound economic shift that will ripple far beyond housing, affecting businesses, agriculture, and entire regional economies. The question isn't whether we'll adapt to this new reality, but how much it will cost us – in both financial and human terms – before we finally act.

---

Nada Ahmed is the founding partner at Houston-based Energy Tech Nexus.

Houston renewables developer powers two new California solar parks

now open

EDP Renewables North America LLC, a Houston-based developer, owner, and operator of renewable energy projects, has unveiled a solar energy park in California whose customers are Houston-based Shell Energy North America and the Eureka, California-based Redwood Coast Energy Authority.

Sandrini I & II Solar Energy Park, located near Bakersfield, is capable of supplying 300 megawatts of power. The park was completed in two phases.

“Sandrini I & II represent EDP Renewables’ continued commitment to investing in California and are a direct contribution to California's admirable target of achieving 100 percent clean electricity by 2045,” says Sandhya Ganapathy, CEO of EDP. “The Golden State is known for its leadership in solar energy, and EDP Renewables is elated to meet the growing demand for reliable clean energy sources.”

Shell signed a 15-year deal to buy power from the 200-megawatt Sandrini I, and the Redwood Coast Energy Authority signed a 15-year deal to buy power from the 100-megawatt Sandrini II.

In July, EDP announced the opening of the 210-megawatt Pearl River Solar Park in Mississippi. Earlier in 2024, the company debuted the 175-megawatt Crooked Lake Solar Park in Arkansas and the 74-megawatt Misenheimer Solar Park in North Carolina. Click here to read more.