Fervo Energy has landed a coveted spot on MIT Technology Review's list of global climatetech companies to watch. Photo via fervoenergy.com

Houston-based Fervo Energy has received yet another accolade—MIT Technology Review named the geothermal energy startup to its 2025 list of the 10 global climatetech companies to watch.

Fervo, making its second appearance on the third annual list, harnesses heat from deep below the ground to generate clean geothermal energy, MIT Technology Review noted. Fervo is one of four U.S. companies to land on the list.

Fervo “uses fracking techniques to create geothermal reservoirs capable of delivering enough electricity to power massive data centers and hundreds of thousands of homes,” MIT Technology Review said.

MIT Technology Review said it produces the annual list to draw attention to promising climatetech companies that are working to decarbonize major sectors of the economy.

“Though the political and funding landscape has shifted dramatically in the US since the last time we put out this list,” MIT Technology Review added, “nothing has altered the urgency of the climate dangers the world now faces — we need to rapidly curb greenhouse gas emissions to avoid the most catastrophic impacts of climate change.”

In addition to MIT Technology Review’s companies-to-watch list, Fervo has appeared on similar lists published by Inc.com, Time magazine and Climate Insider.

In an essay accompanying MIT Technology Review’s list, Microsoft billionaire Bill Gates said his Breakthrough Energy Ventures investment group has invested in more than 150 companies, including Fervo and another company on the MIT Technology Review list, Redwood Materials.

In his essay, Gates wrote that ingenuity is the best weapon against climate change.

Yet climate technology innovations “offer more than just a public good,” he said. “They will remake virtually every aspect of the world’s economy in the coming years, transforming energy markets, manufacturing, transportation, and many types of industry and food production. Some of these efforts will require long-term commitments, but it’s important that we act now. And what’s more, it’s already clear where the opportunities lie.”

In a recent blog post highlighting Fervo, Gates predicted geothermal will eventually supply up to 20 percent of the world’s electricity, up from his previous estimate of as much as 5 percent.

Fervo is one of the pioneers in geothermal energy. Gates and other investors have pumped $982 million into Fervo since its founding in 2017. With an estimated valuation of $1.4 billion, Fervo has achieved unicorn status, meaning its valuation as a private company exceeds $1 billion.

Aside from Breakthrough Energy Ventures, oilfield services provider Liberty Energy is a Fervo investor. U.S. Energy Secretary Chris Wright was chairman and CEO of Denver-based Liberty Energy before assuming his federal post.

Axios reported on Oct. 1 that Fervo is raising a $300 million series E round, which would drive up the startup’s valuation. News of the $300 million round comes as the company gears up for a possible IPO, according to Axios.

Fervo co-founder and CEO Tim Latimer told Axios this spring that a potential IPO is likely in 2026 or 2027. Ahead of an IPO, the startup is aiming for a $2 billion to $4 billion valuation, Axios reported.

The first phase of Fervo’s marquee Cape Station geothermal energy plant in Utah is scheduled to go online next year, with the second phase set to open in 2028. Once it’s completed, the plant will be capable of generating 500 megawatts of power. This summer, the startup said it secured $205.6 million in capital to finance construction of the plant.

TEX-E, a Houston-based energy transition nonprofit, has named Sandy Guitar as its executive director. Photo courtesy TEX-E.

TEX-E names Houston VC leader as new executive director

new hire

The Texas Exchange for Energy & Climate Entrepreneurship (TEX-E) has named Houston venture capital and innovation leader Sandy Guitar as its new executive director.

Guitar succeeds David Pruner, who will move into the board chair role.

Guitar previously served as general partner and managing director at Houston-based VC firm HX Venture Fund and is co-founder of Weathergage Capital. She also sits on the advisory board of Rice University's Liu Idea Lab for Innovation and Entrepreneurship (Lilie) and launched the Women Investing in VC in Houston group.

In a LinkedIn post, Guitar shared that she's looking forward to bringing her problem-solving skills to the energy transition.

"Innovating in the energy sector is as significant and intricate a problem as I have ever worked on — one that demands creativity, collaboration, and resourcefulness at every turn," she shared.

"I'm honored to join TEX-E at such a pivotal time in the energy transition," she added in a news release. "Energy and climate innovation is accelerating at the intersection of brilliant minds and bold ideas. I'm excited to help TEX-E amplify that collision between students who think differently and the real-world problems that demand fresh solutions."

According to TEX-E, Guitar will continue to lead the organization's programming that aims to connect student climate entrepreneurs with "industry reality."

"Sandy understands the complexities of the Texas energy ecosystem and brings a forward-looking vision for how related innovation can drive meaningful, lasting impact. She's exactly the leader we need to take TEX-E to the next level and help create the next generation of energy transition innovators," David Baldwin, TEX-E board member, added in the release.

TEX-E was founded in 2022 through partnerships with MIT Martin Trust Center for Entrepreneurship and Greentown Labs. It works with university students from six schools: Rice University, University of Houston, Prairie View A&M University, The University of Texas at Austin, Texas A&M University and MIT.

It's known for its student track within the Energy Venture Day and Pitch Competition at CERAWeek, which awarded $25,000 to HEXASpec, a Rice University-led team, at the 2025 event. It also hosted its inaugural TEX-E Conference, centered on the theme of Energy & Entrepreneurship: Navigating the Future of Climate Tech, earlier this year.

Georgina Campbell Flatter worked closely with Greentown Labs when it was founded in 2011 and now will lead the incubator as CEO. Photo courtesy Greentown Labs

Greentown Labs names new CEO to lead climate tech incubator

new hire

Houston and Boston climate tech incubator Greentown Labs has named Georgina Campbell Flatter as the organization’s incoming CEO.

Flatter will transition to Greentown from her role as co-founder and executive director of TomorrowNow.org, a global nonprofit that studies and connects next-generation weather and climate technologies with communities most affected by climate change.

“We are at a transformational moment in the energy transition, with an unprecedented opportunity to drive solutions in energy production, sustainability, and climate resilience,” Flatter said in a news release. “Greentown Labs is, and has always been, a home for entrepreneurs and a powerhouse of collaboration and innovation.”

Previously, Flatter worked to launch TomorrowNow out of tomorrow.io, a Boston-based AI-powered weather intelligence and satellite technology company. The organization secured millions in climate philanthropy from partners, including the Gates Foundation, which helped deliver cutting-edge climate solutions to millions of African farmers weekly.

Flatter also spent 10 years at the Massachusetts Institute of Technology (MIT), where she was a senior lecturer and led global initiatives at the intersection of technology and social impact. Her research work includes time at Langer Lab and Sun Catalytix, an MIT – ARPA-E-funded spin-out that focused on energy storage solutions inspired by natural photosynthesis. Flatter is also an Acumen Rockefeller Global Food Systems Fellow and was closely involved with Greentown Labs when it was founded in Boston in 2011, according to the release.

“It’s rare to find an individual who has impressive climate and energy expertise along with nonprofit and entrepreneurial leadership—we’re fortunate Georgie brings all of this and more to Greentown Labs,” Bobby Tudor, Greentown Labs Board Chair and Chairman of the Houston Energy Transition Initiative, said in a news release.

Flatter will collaborate with Kevin Dutt, Greentown’s Interim CEO, and also continue to serve on Greentown’s Board of Directors, which was recently announced in December and contributed to a successful $4 million funding round. She’s also slated to speak at CERAWeek next month.

“In this next chapter, I’m excited to build on our entrepreneurial roots and the strength of our ever-growing communities in Boston and Houston,” Flatter added in a news release. “Together, we will unite entrepreneurs, partners, and resources to tackle frontier challenges and scale breakthrough technologies.”

Greentown also named Naheed Malik its new chief financial officer last month. The announcements come after Greentown’s former CEO and president, Kevin Knobloch, announced that he would step down in July 2024 after less than a year in the role.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

NRG makes latest partnership to grow virtual power plant

VPP partners

Houston-based NRG Energy recently announced a new long-term partnership with San Francisco-based Sunrun that aims to meet Texas’ surging energy demands and accelerate the adoption of home battery storage in Texas. The partnership also aligns with NRG’s goal of developing a 1-gigawatt virtual power plant by connecting thousands of decentralized energy sources by 2035.

Through the partnership, the companies will offer Texas residents home energy solutions that pair Sunrun’s solar-plus-storage systems with optimized rate plans and smart battery programming through Reliant, NRG’s retail electricity provider. As new customers enroll, their stored energy can be aggregated and dispatched to the ERCOT grid, according to a news release.

Additionally, Sunrun and NRG will work to create customer plans that aggregate and dispatch distributed power and provide electricity to Texas’ grid during peak periods.

“Texas is growing fast, and our electricity supply must keep pace,” Brad Bentley, executive vice president and president of NRG Consumer, said in the release. “By teaming up with Sunrun, we’re unlocking a new source of dispatchable, flexible energy while giving customers the opportunity to unlock value from their homes and contribute to a more resilient grid

Participating Reliant customers will be paid for sharing their stored solar energy through the partnership. Sunrun will be compensated for aggregating the stored capacity.

“This partnership demonstrates the scale and strength of Sunrun’s storage and solar distributed power plant assets,” Sunrun CEO Mary Powell added in the release. “We are delivering critical energy infrastructure that gives Texas families affordable, resilient power and builds a reliable, flexible power plant for the grid.”

In December, Reliant also teamed up with San Francisco tech company GoodLeap to bolster residential battery participation and accelerate the growth of NRG’s virtual power plant network in Texas.

In 2024, NRG partnered with California-based Renew Home to distribute hundreds of thousands of VPP-enabled smart thermostats by 2035 to help households manage and lower their energy costs. At the time, the company reported that its 1-gigawatt VPP would be able to provide energy to 200,000 homes during peak demand.

10+ exciting energy breakthroughs made by Houston teams in 2025

Year In Review

Editor's note: As 2025 comes to a close, we're revisiting the biggest headlines and major milestones of the energy sector this year. Here are the most exciting scientific breakthroughs made by Houstonians this year that are poised to shape the future of energy:

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

Rice University researchers have developed a new method for removing PFAS from water that works 100 times faster than traditional filters. Photo via Rice University.

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water. The Rice-led study centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

UH researchers make breakthrough in cutting carbon capture costs

UH carbon capture cost cutting

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants. Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team first introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process.The second breakthrough displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge.

Houston team’s discovery brings solid-state batteries closer to EV use

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape. Their work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

Houston researchers make breakthrough on electricity-generating bacteria

A team of Rice researchers, including Caroline Ajo-Franklin and Biki Bapi Kundu, has uncovered how certain bacteria breathe by generating electricity. Photo by Jeff Fitlow/Rice University.

Research from Rice University that merges biology with electrochemistry has uncovered new findings on how some bacteria generate electricity. Research showed how some bacteria use compounds called naphthoquinones, rather than oxygen, to transfer electrons to external surfaces in a process known as extracellular respiration. In other words, the bacteria are exhale electricity as they breathe. This process has been observed by scientists for years, but the Rice team's deeper understanding of its mechanism is a major breakthrough, with implications for the clean energy and industrial biotechnology sectors, according to the university.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A study from researchers at Rice University could lead to future advances in superconductors with the potential to transform energy use. The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials. The materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance. The Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. This material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

Houston researchers make headway on developing low-cost sodium-ion batteries

Houston researchers make headway on developing low-cost sodium-ion batteries

Rice's Atin Pramanik and a team in Pulickel Ajayan's lab shared new findings that offer a sustainable alternative to lithium batteries by enhancing sodium and potassium ion storage. Photo by Jeff Fitlow/Courtesy Rice University

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries. The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

Houston scientists develop 'recharge-to-recycle' reactor for lithium-ion batteries

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock. The findings demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing. The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs.

Houston researchers develop strong biomaterial that could replace plastic

A team led by M.A.S.R. Saadi and Muhammad Maksud Rahman has developed a biomaterial that they hope could be used for the “next disposable water bottle." Photo courtesy Rice University.

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic. The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties.” Ultimately, the scientists hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth. Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

Houston researchers reach 'surprising' revelation in materials recycling efforts

A team led by Matteo Pasquali, director of Rice’s Carbon Hub, has unveiled how carbon nanotube fibers can be a sustainable alternative to materials like steel, copper and aluminum. Photo by Jeff Fitlow/ Courtesy Rice University

Researchers at Rice University have demonstrated how carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties. The discovery shows that CNT fibers could be used as a sustainable alternative to traditional materials like metals, polymers and the larger, harder-to-recycle carbon fibers, which the team hopes can pave the way for more sustainable and efficient recycling efforts.