At the GHP's Future of Global Energy event, panelists discussed the opportunities for scale in Houston. Photo by Natalie Harms/EnergyCapital

Time is of the essence when it comes to scaling energy transition businesses in Houston — at least that's what a group of panelists agreed on at a recent event from the Greater Houston Partnership.

The GHP's Future of Global Energy event, which took place on October 9, featured a panel entitled, "Epicenter of Energy Innovation for Scale" and was moderated by Barbara Burger, former president of Chevron Technology Ventures and current startup adviser and mentor. Joining Burger was Kristina Lund, president of Pattern Energy; Brooke Vandygriff, COO of HIF Global: and Bud Vos, CEO of MetOx International. All three companies have and plan to continue scaling in Houston.

The conversation covered some of the unique achievements each of the panelists' companies have reached recently, including HIF Global's millions raised to create e-fuels, MetOx's $25 million series B extension, and Pattern Energy's Southern Spirit project scoring $360 million from the Department of Energy to connect Texas's ERCOT to other states.

After covering the momentum each company has right now, Burger asked each of the panelists why Houston makes sense as a place for scaling their energy transition business.

"The U.S. has a great regulatory environment, ERCOT specifically. Texas is in the business of permitting projects," Vandygriff says. "If you take the right steps, you can get your permits. They are very responsive to attracting and recruiting businesses here."

Also attractive is Houston's existing energy workforce. Even when it comes to technology roles, Houston delivers.

"There is great tech talent here," Vos says, pointing out that Bill Gates called Houston the "Silicon Valley of energy" when he was here for CERAWeek. "I think there's an element of that that's very true. There's a lot innovation, there's a lot of creative thinking, and being able to come out of these businesses with huge momentum then go into startups and innovate is a culture change that I think Houston is going through."

The panelists, most of whom are not Houston natives, agreed in a welcoming culture within the business sector.

"I really think that Houston offers great hospitality, and the energy networks here are so strong," Lund says. "You feel the energy of the city."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University spinout lands $500K NSF grant to boost chip sustainability

cooler computing

HEXAspec, a spinout from Rice University's Liu Idea Lab for Innovation and Entrepreneurship, was recently awarded a $500,000 National Science Foundation Partnership for Innovation grant.

The team says it will use the funding to continue enhancing semiconductor chips’ thermal conductivity to boost computing power. According to a release from Rice, HEXAspec has developed breakthrough inorganic fillers that allow graphic processing units (GPUs) to use less water and electricity and generate less heat.

The technology has major implications for the future of computing with AI sustainably.

“With the huge scale of investment in new computing infrastructure, the problem of managing the heat produced by these GPUs and semiconductors has grown exponentially. We’re excited to use this award to further our material to meet the needs of existing and emerging industry partners and unlock a new era of computing,” HEXAspec co-founder Tianshu Zhai said in the release.

HEXAspec was founded by Zhai and Chen-Yang Lin, who both participated in the Rice Innovation Fellows program. A third co-founder, Jing Zhang, also worked as a postdoctoral researcher and a research scientist at Rice, according to HEXAspec's website.

The HEXASpec team won the Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge in 2024. More recently, it also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track, taking home $25,000.

"The grant from the NSF is a game-changer, accelerating the path to market for this transformative technology," Kyle Judah, executive director of Lilie, added in the release.

---

This article originally ran on InnovationMap.

Rice research team's study keeps CO2-to-fuel devices running 50 times longer

new findings

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.