The first phase of the Pelican Gulf Coast Carbon Removal project recently received nearly $4.9 million in grants. Photo via Getty Images

The University of Houston is spilling details about its role in a potential direct air capture, or DAC, hub in Louisiana.

The first phase of the Pelican Gulf Coast Carbon Removal project recently received nearly $4.9 million in grants, including almost $3 million from the U.S. Department of Energy. Led by Louisiana State University, the Pelican consortium includes UH and Shell, whose U.S. headquarters is in Houston.

The funding will go toward studying the feasibility of a DAC hub that would pull carbon dioxide from the air and either store it in deep geological formations or use it to manufacture various products, such as concrete.

“This support of development and deployment of direct air capture technologies is a vital part of carbon management and allows us to explore sustainable technological and commercial opportunities,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, says in a news release.

Chemical engineer Joseph Powell, founding executive director of the university’s Energy Transition Institute, will be the primary leader of UH’s work on the Pelican project.

“DAC can be an important technology for addressing difficult-to-decarbonize sectors such as aviation and marine transport as well as chemicals, or to achieve negative emissions goals,” Powell says.

Powell, a fellow of the American Institute of Chemical Engineers, was Shell’s first-ever chief scientist for chemical engineering from 2006 until his retirement in 2020. He joined Shell in 1988.

Shell is the Pelican project’s “technical delivery partner.”

“Advancing carbon management technologies is a critical part of the energy transition, and effectively scaling this technology will require continued collaboration, discipline, and innovation,” says Adam Prince, general manager of carbon capture storage strategy and growth at Shell.

The University of Houston has received a grant from the Baker Hughes Foundation. Photo via UH.edu

University's energy transition hub scores $100,000 grant from energy corporation

just gifted

A Houston school is cashing in a major gift from a local energy company in order to support the industry's future workforce, research, and more.

The University of Houston Energy Transition Institute received a $100,000 grant from the Baker Hughes Foundation this week, which will work towards the ETI’s goals to support workforce development programs, and environmental justice research.

The program addresses the impact of energy transition solutions in geographical areas most-affected by environmental impacts.

“We are proud to support the University of Houston in its environmental justice research and workforce development programs; at Baker Hughes, we strive to take energy forward, and are committed to a fair and just energy transition,” says Chief Sustainability Officer Allyson Book in a news release. “Novel educational approaches centered around social, climate and environmental justice are crucial to creating a sustainable future for generations to come.”

The grant aims to help ETI in analyzing environmental footprints of energy use processes, energy use processes, impact on health, and emissions, as well as support the university’s Energy Scholars Program, which focuses on research programs on carbon management, hydrogen, and circular plastics for undergraduate students.The donation also supports Baker Hughes’ work with the United Nations’ Sustainable Development Goals (SDGs) that work to ensure “inclusive and equitable quality education for all.”

“We look forward to working with the Baker Hughes Foundation to address grand challenges in energy and chemicals and create a sustainable and equitable future for all,” says Ramanan Krishnamoorti, vice president of energy and innovation at UH.

ETI launched a year ago through a $10 million grant from Shell USA Inc. and Shell Global Solutions (US) Inc., and is led by Joe Powell, who opted to take the helm of the program over retiring, telling EnergyCapital that it was an opportunity he couldn't pass up.

UH has announced a central campus innovation hub that will house UH's programs for STEM, social sciences, business and arts. Slated to open in 2025, the 70,000 square foot hub will house a makerspace, the Cyvia and Melvyn Wolff Center for Entrepreneurship, the Energy Transition Institute, innovation programs, and Presidential Frontier Faculty labs and offices.

“The University of Houston aims to transform lives and communities through education, research, innovation and service in a real-world setting," Krishnamoorti says in a news release. “I am confident that working together we will make a greater impact.”

Joseph Powell, founding director of UH Energy Transition Institute, discusses the institute's role in the clean energy landscape and their corporate partnerships. Photo via uh.edu

University of Houston's energy transition exec unpacks future of institute, partnerships, and more

Q&A

Joseph Powell is about six months into his role as the founding director of the University of Houston’s Shell-backed Energy Transition Institute but already is eyeing how the Institute can aid generations to come through clean energy.

The Energy Transition Institute, which launched a year ago through a $10 million grant from Shell USA Inc. and Shell Global Solutions (US) Inc., is focused on three core areas of clean energy: hydrogen, carbon management, and circular plastics. Powell previously served as chief scientist for Shell as a chemical engineer and has co-invented 60 granted patents.

Powell discussed with EnergyCapital the projects ETI is excited for, opportunities for students to get involved, and their partnership with corporations.

EnergyCapitalHTX: To get started with a little bit of background, the University of Houston Energy Transition Institute was established in March 2020 with a $10 million commitment from Shell. So why did the university decide now is the time for an institute like this to be formed?

Joseph Powell: Houston is the energy capital, and the energy transition has been on everyone's mind, and so certainly now is the right time for an offering to industry to look at how to coordinate activities in that space. We reached out to Shell, which has really made strong commitments in terms of making the pivot from being an oil and gas company to being an energy company and really embracing the energy transition and everything that goes along with that. There was a strong relationship between University of Houston and Shell on the recruitment side, so a number of the Shell staff and employees. UH has been one of the principal suppliers of talent to Shell as an organization, also on the research side in terms of research around hydrogen chemical reaction engineering, and other aspects on the social and community benefits side of what happens with energy. So, there's been quite a bit of overlap. I think Shell saw it as really important to be partnering in the energy capital of the world, to be providing that pipeline of talent for what's going to be needed for the energy transition.

EC: You decided to come to UH to lead the Energy Transition Institute over retiring. What inspired you to take on this role? What’s your vision for the organization?

JP: It was an opportunity I couldn't pass up. I had worked 36 years in the industry, for Exxon and 32 years with Shell. The elements of the Energy Transition Institute were something that I was very passionate about working on with Shell, since I've been promoted to chief scientist of chemical engineering for the growth global group in 2006. I was involved in helping Shell set its strategy to become a full energy company and chemicals, not just oil and gas. I was involved in the elements of that transition, and then I also had a very strong interest in sustainability in terms of how to manage not only the greenhouse gas footprints of the company, but also elements on the chemical side that go with sustainability.

Shell wanted to combine those two into an energy transition Institute, circular plastics and chemicals were a major focus of that, along with hydrogen as a clean vector for future energy. I was involved with Shell and helped to put together some of their moonshots for how hydrogen can be used in the future economy. The Biden administration has now termed moonshots as Earthshots for the US to be able to use hydrogen as that clean vector to deliver renewable and other forms of energy going forward, as well as carbon management, so I was heavily involved Shell’s planning for how to deal with CO2, whether to capture it and put it underground, or capture it and use it. I'm on the National Academy study team right now, looking at what is the potential to be using some of that CO2 into products as opposed to storing it underground. All of those elements were important and in line with things that I care about and have been heavily involved with, throughout my career. So, why retire when one can be engaged with all of those types of things and now help the next generation come up to speed and take that over and drive it into 2050 and beyond what needs to be done?

EC: How is UH engaging with corporate partners? Why is a collaboration of this nature important?

JP: This collaboration is important for several reasons. One is that we are that bridge to the students and workforce of the future. It's very important for this generation to be as excited about careers and energy as I was, coming up during the energy crisis of the last century and we thought we were absolutely out of energy. We had rationing of gasoline and other things going on, back when I was in high school. Now we have many sources of energy, in a certain sense an energy abundance, but we really need to be looking at the environmental footprint, impact on the climate and then what forms of energy we want to be using. Then you add to that the issue with the impact of plastics on the environment, and how to drive to a more circular economy where we're recycling those and having less of that escape into the environment; those are all strong drivers of what needs to be done going forward.

It takes a lot of energy to process chemicals, plastics, and materials in a circular manner. Developing that workforce of the future means we need the students who want to engage in these efforts and making sure that those opportunities are available across the board to people of all different economic backgrounds in terms of participating in what is going to be just a tremendous growth engine for the future in terms of jobs and opportunities. You're looking at trillions of dollars of annual investment that's needed to manage the energy transition, so it's a really exciting opportunity for those who want to be going into those careers. It's not just science and engineering, but also jobs in law, policy, and communications, because there's a tremendous need for knowledge and background in the energy transition in order to be effective in that going forward. We want to have all the good talent that can be attracted to that arena as a way to address the problem. It's a grand challenge.

We want to make sure that in addition to the research opportunities, since UH is a Tier 1 research institute, we focus on working very closely with industry; there's a number of multinational and local chemical and energy companies that have their research centers and home offices in the Houston area. We can develop those close relationships between the researchers and business interests involved with the students at the university, because we're right here and co-located and can really develop some very strong working teams in that space. It's been exciting to be responding to the federal grant opportunities, which have been abundant in the last year and a half and putting together proposals, to be engaging the industry investigators along with the university students to work on some of those problems. It's a good win-win for both.

We also get to be a trusted voice in the overall equation because there's a lot to know and understand about energy and circular chemicals. They’re more nuanced and complex than what may appear in the news headlines in terms of understanding the trade-offs that have to be worked out, in order to optimize for everyone who's involved. The university can bring in that broad set of stakeholders and have a conversation and make sure that all those co-benefits are understood and the issues that come with energy infrastructure are also worked through for people impacted by the infrastructure but also the benefits of clean air, cleaner environment, and reduced risk of climate change.

EC: Are there any particular technologies the institute is focusing on or excited about at the moment?

JP: I'm really big on hydrogen as an energy vector for the future. Currently, we use hydrogen primarily in refining petroleum into gasoline and diesel and also making fertilizer which is very important for mankind. There was a Nobel Prize on that, you know, more than 100 years ago, and the importance of being able to grow food at rates the planet’s population requires.

Hydrogen now is being looked at, beyond those applications as essentially the diesel or gasoline of the future and also the liquefied natural gas of the future. It can be a clean vector, because you can put it into a fuel cell and generate energy cleanly where water is the only product of that reaction. That can be used to drive quite a number of energy related processes that are currently using combustion of fossil fuels that contain carbon. One of the interesting things is that hydrogen can be supplied to trucks and buses, agricultural tractors, and such. Most of the goods that you're buying today are produced in warehouses where the forklifts are running on hydrogen fuel cells rather than batteries because they refuel so quickly. It's cleaner than emissions. So then there's good air quality in the warehouses. There are more than 60,000 hydrogen-fueled forklifts now in the US, because of that value proposition. We see that for this heavy duty transportation, hydrogen is that very clean vector, you can make it by taking renewable energy and splitting water into hydrogen so it can be very clean. It can also be made from the abundant natural gas we have in Texas and storing the CO2 underground and then using the clean hydrogen for that fuel. That's one of the very exciting new value propositions that go with the Institute.

The second one is carbon management. The Energy Transition Institute will sit within UH Energy, which was founded a number of years ago and so it's looking at the transition part of energy, but UH Energy has its Center for Carbon Management in Energy, which has been focusing capturing and storing CO2 underground off of the existing facilities that we have up and running. They're run by Chuck McConnell but what we will do with ETI is extend that more onto the research side for some of the new things coming along in terms of capturing and utilizing CO2. I'm on a national academy study looking at where and how we want to be turning that CO2 into usable products, using energy and hydrogen, to make a number of those projects. That synergizes with hydrogen as part of the Institute.

Capturing and converting CO2 into usable products is certainly one of the exciting opportunities and then also to reuse those products we've already been making. There are also so many nice things you can do with hydrogen in terms of energy storage, and also helping to upgrade some of the carbon dioxide into usable products, but then also bio feedstock, you can take crop residues or trees and other energy type materials and use hydrogen to upgrade those into those types of plastic materials as well. That's another place where hydrogen is combined with managing a carbon resource to make a more sustainable plastic or polymer.

EC: With UH’s strong emphasis on research and entrepreneurship, is the Institute playing to these strengths within its programming and opportunities to further this trend and if so how?

JP: The money that's been funded by Shell into the launch of the Institute, and then that's been leveraged up to the $52 million point through various donors matching funds. With that, we will be hiring additional faculty to work in this space so that we can further expand the research that's being done. Each new faculty member becomes the opportunity for three things: more coursework in the area around energy, which impacts the student education; the hiring of graduate students who will be doing research; and then that also translates into undergraduate opportunities to be working in the labs and learning. We're also going to be building a new innovation hub in the center of campus here. It will be right across from the MD Anderson library where the old College of Technology building had been located.

On the first floor, there will be a makerspace where the students with ideas and people from the community will be able to come in and have access to 3D printers and other types of materials to put their widgets and prototypes together. On the second floor, then will be the Wolff Center for Entrepreneurship, which has the top undergraduate program in terms of entrepreneurship so they will hold mentorships, present there, in classroom-like settings, getting people involved with launching an idea and taking it forth into the commercial marketplace. The Energy Transition Institute will be on the third floor because so much of that innovation will be involved in the space of energy transition, which is really the main growth engine for expanding research at the university. Then we'll have on the top floor some laboratories, not only on chemistry and materials, but also on data science. And so we have a Data Science Institute, set up by HPE here at UH, looking at for example how artificial intelligence, machine learning and all those kinds of things help you innovate in the energy materials and processes.

Having a hub that combines all of that together really is an attraction to get all those players together on campus and will be really a key to making all this happen. It's a really exciting place to get involved and if you're a student, having all that in front of you, in terms of opportunity, we think it'd be a great attraction.

------

This conversation has been edited for brevity and clarity.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Tackling methane in the energy transition: Takeaways from Global Methane Hub and HETI

The view from heti

Leaders from across the energy value chain gathered in Houston for a roundtable hosted by the Global Methane Hub (GMH) and the Houston Energy Transition Initiative (HETI). The session underscored the continued progress to reduce methane emissions as the energy industry addresses the dual challenge of producing more energy that the world demands while simultaneously reducing emissions.

The Industry’s Shared Commitment and Challenge

There’s broad recognition across the industry that methane emissions must be tackled with urgency, especially as natural gas demand is projected to grow 3050% by 2050. This growth makes reducing methane leakage more than a sustainability issue—it’s also a matter of global market access and investor confidence.

Solving this issue, however, requires overcoming technical challenges that span infrastructure, data acquisition, measurement precision, and regulatory alignment.

Getting the Data Right: Top-Down vs. Bottom-Up

Accurate methane leak monitoring and quantification is the cornerstone of any effective mitigation strategy. A key point of discussion was the differentiation between top-down and bottom-up measurement approaches.

Top-down methods such as satellite and aerial monitoring offer broad-area coverage and can identify large emission plumes. Technologies such as satellite-based remote sensing (e.g., using high-resolution imagery) or airborne methane surveys (using aircraft equipped with tunable diode laser absorption spectroscopy) are commonly used for wide-area detection. While these methods are efficient for identifying large-scale emission hotspots, their accuracy is lower when it comes to quantifying emissions at the source, detecting smaller, diffuse leaks, and providing continuous monitoring.

In contrast, bottom-up methods focus on direct, on-site detection at the equipment level, providing more granular and precise measurements. Technologies used here include optical gas imaging (OGI) cameras, flame ionization detectors (FID), and infrared sensors, which can directly detect methane at the point of release. These methods are more accurate but can be resource and infrastructure intensive, requiring frequent manual inspections or continuous monitoring installations, which can be costly and technically challenging in certain environments.

The challenge lies in combining both methods: top-down for large-scale monitoring and bottom-up for detailed, accurate measurements. No single technology is perfect or all-inclusive. An integrated approach that uses both datasets will help to create a more comprehensive picture of emissions and improve mitigation efforts.

From Detection to Action: Bridging the Gap

Data collection is just the first step—effective action follows. Operators are increasingly focused on real-time detection and mitigation. However, operational realities present obstacles. For example, real-time leak detection and repair (LDAR) systems—particularly for continuous monitoring—face challenges due to infrastructure limitations. Remote locations like the Permian Basin may lack the stable power sources needed to run continuous monitoring equipment to individual assets.

Policy, Incentives, and Regulatory Alignment

Another critical aspect of the conversation was the need for policy incentives that both promote best practices and accommodate operational constraints. Methane fees, introduced to penalize emissions, have faced widespread resistance due to their design flaws that in many cases actually disincentivize methane emissions reductions. Industry stakeholders are advocating for better alignment between policy frameworks and operational capabilities.

In the United States, the Subpart W rule, for example, mandates methane reporting for certain facilities, but its implementation has raised concerns about the accuracy of some of the new reporting requirements. Many in the industry continue to work with the EPA to update these regulations to ensure implementation meets desired legislative expectations.

The EU’s demand for quantified methane emissions for imported natural gas is another driving force, prompting a shift toward more detailed emissions accounting and better data transparency. Technologies that provide continuous, real-time monitoring and automated reporting will be crucial in meeting these international standards.

Looking Ahead: Innovation and Collaboration

The roundtable highlighted the critical importance of advancing methane detection and mitigation technologies and integrating them into broader emissions reduction strategies. The United States’ 45V tax policy—focused on incentivizing production of low-carbon intensity hydrogen often via reforming of natural gas—illustrates the growing momentum towards science-based accounting and transparent data management. To qualify for 45V incentives, operators can differentiate their lower emissions intensity natural gas by providing foreground data to the EPA that is precise and auditable, essential for the industry to meet both environmental and regulatory expectations. Ultimately, the success of methane reduction strategies depends on collaboration between the energy industry, technology providers, and regulators.

The roundtable underscored that while significant progress has been made in addressing methane emissions, technical, regulatory, and operational challenges remain. Collaboration across industry, government, and technology providers is essential to overcoming these barriers. With better data, regulatory alignment, and investments in new technologies, the energy sector can continue to reduce methane emissions while supporting global energy demands.

———

HETI thanks Chris Duffy, Baytown Blue Hydrogen Venture Executive, ExxonMobil; Cody Johnson, CEO, SCS Technologies; and Nishadi Davis, Head of Carbon Advisory Americas, wood plc, for their participation in this event.

This article originally appeared on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Houston battery recycling company signs 15-year deal to supply Texas flagship facility

green team

Houston- and Singapore-headquartered Ace Green Recycling, a provider of sustainable battery recycling technology solutions, has secured a 15-year battery material supply agreement with Miami-based OM Commodities.

The global commodities trading firm will supply Ace with at least 30,000 metric tons of lead scrap annually, which the company expects to recycle at its planned flagship facility in Texas. Production is expected to commence in 2026.

"We believe that Ace's future Texas facility is poised to play a key role in addressing many of the current challenges in the lead industry in the U.S., while helping the country meet the growing domestic demand for valuable battery materials," Nishchay Chadha, CEO and co-founder of Ace, said in a news release. "This agreement with OM Commodities will provide us with enough supply to support our Texas facility during all of its current planned phases, enabling us to achieve optimal efficiencies as we deploy our solutions in the U.S. market. With OM Commodities being a U.S.-based leader in metals doing business across the Americas and Asia with a specialty in lead batteries, we look forward to leveraging their expertise in the space as we advance our scale-up efforts."

The feedstock will be sufficient to cover 100 percent of Ace's phase one recycling capacity at the Texas facility, according to the statement. The companies are also discussing future lithium battery recycling collaborations.

"Ace is a true pioneer when it comes to providing an environmentally friendly and economically superior solution to recycle valuable material from lead scrap," Yiannis Dumas, president of OM Commodities, added in the news release. "We look forward to supporting Ace with lead feedstock as they scale up their operations in Texas and helping create a more circular and sustainable battery materials supply chain in the U.S."

Additionally, ACE shared that it is expected to close a merger with Athena Technology Acquisition Corp. II (NYSE: ATEK) in the second half of 2025, after which Ace will become a publicly traded company on the Nasdaq Stock Market under the ticker symbol "AGXI."

"As we continue to scale our lead and lithium battery recycling technologies to help support the markets for both internal combustion engines and electric vehicles, we expect that our upcoming listing will be a key accelerator of growth for Ace,” Chada said.

China-based company to launch its largest U.S. energy storage project in Houston

coming soon

Trina Storage and FlexGen, a North Carolina-based company that develops integrated energy storage systems, are bringing a 371-megawatt battery energy storage system to Houston. The project will be the largest grid-scale deployment project in North America by Trina Storage, which is a business unit of China-based Trina Solar.

"This project is a testament to Trina Storage's ability to provide a fully bankable, integrated energy storage solution that meets the evolving needs of the market," Terry Chen, vice president of Trina Storage North America, said in a news release. "As our first grid-scale deployment in North America, this achievement reflects the industry's confidence in our technology and our commitment to de-risking energy storage investments and supporting the energy transition in the region."

The project, developed by Boulder, Colorado-based SMT Energy, will utilize Trina Storage's advanced Elementa 2 battery storage system, which is designed to optimize energy performance and reliability. The system uses Trinas proprietary lithium iron phosphate cells that are more than 95 percent energy efficient, according to the company.

FlexGen will provide system integration and use its HybridOS energy management software. The HybridOS allows site operators to manage systems, detect issues faster and predict maintenance needs.

"This collaboration with Trina Storage and SMT Energy represents another major step in accelerating the deployment of flexible energy storage assets to meet growing demand," Diane Giacomozzi, COO at FlexGen, added in the release. "By pre-integrating FlexGen HybridOS with Trina's Elementa 2 energy storage solution in our Durham Innovation Lab, we're enabling faster project delivery and optimized performance from the first moment of operation."

Trina Storage currently has 10 energy storage facilities in China and two in the UK. The Houston facility is part of its plans to expand across the U.S., according to a LinkedIn post form the company.