Here are three things to know about how the Inflation Reduction Act is driving a clear tech industrial revolution. Photo via energy.gov

In August of 2022, President Joe Biden signed into law the Inflation Reduction Act which aims to mitigate inflation by reducing the federal government budget deficit and lowering prescription drug prices. Through federal funding and a combination of grants, loans, rebates, incentives and other investments, the IRA also will impact domestic energy production while bolstering efforts for an energy-abundant, low-carbon future.

At the bill’s one-year anniversary, Mitsubishi Heavy Industries America held a panel of leaders across multiple sectors — energy, finance, industry and academia — to discuss the IRA and what it means for the future of business and industries.

Here are three things to know about how the Inflation Reduction Act is driving a clear tech industrial revolution, according to Mitsubishi Heavy Industries:

1. IRA Encourages Private-Sector Investment

Since being passed into law by President Biden in August of 2022, the IRA’s first year yielded:

  • Companies have announced 96 gigawatts of new clean power over the previous eight months, enough to power almost 20 million homes – about one-seventh the total number of homes in the U.S.
  • Companies have announced enough new U.S. battery manufacturing projects to support production of more than 10 million EVs per year – more vehicles than were manufactured in the U.S. in 2021.
  • The IRA’s expected impact on private investment has increased between 50 percent and 200 percent from initial estimates, based on research from the Brookings Institution and Rhodium Group, with the largest jumps related to hydrogen, carbon capture, energy storage and critical minerals.

2. A strong focus on environmental justice

According to a fact sheet issued by the White House, the IRA will: reduce pollution; improve clean transit; make clean energy more affordable and accessible; and strengthen resilience to climate change. With a simple mission to accelerate the energy transition with incentives rather than penalties, the act will allocate nearly $400 billion to efforts to reach a low-carbon, energy abundant future including:

  • More than 40 percent of the $27 billion Greenhouse Gas Reduction Fund ($10.8 billion) will benefit low-income and disadvantaged communities.
  • $3 billion for states, tribes, municipalities and community-based nonprofit organizations for environmental justice and climate justice block grants. Eligible activities include mitigating climate risks from heat islands and wood heater emissions, and reducing indoor air pollution; climate resiliency; and facilitating engagement of disadvantaged communities.
  • $3 billion to reduce air pollution and emissions at ports via the installation of zero-emissions equipment and technology.
  • $37.5 million in grants to monitor and reduce air pollution and greenhouse gas emissions at schools in low-income and disadvantaged communities along with another $12.5 million to provide technical assistance to help schools address environmental issues.
  • $33 million to the Council on Environmental Quality to collect data and track disproportionate impacts of pollution and climate change on environmental justice communities in addition to $3 million in grants to deploy, integrate and operate air quality sensors in low-income and disadvantaged communities

3. Collaboration reimagined

As the race to net zero continues, tech giants and energy leaders across all sectors ––corporations, governments, nonprofits and academia –– have come together for one common goal: develop solutions to tackle the world’s toughest energy issues. When it comes to progressing the IRA, industry and Mitsubishi President and CEO Takajiro Ishikawa weighed in on collaboration for the act noting that “The energy transition can’t be done by just one party. Collaboration and communication between all parties is key.”

------------

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

How the IRA is affecting clean energy project development, events not to miss, and more things to know this week. Photo via Getty Images

3 things to know this week: Energy startups announce big wins, evaluating the IRA's first year, and more

hou knew?

Editor's note: It's a new week — start it strong with three quick things to know in Houston's energy transition ecosystem. Three energy tech startups are celebrating big wins, experts evaluate the IRA's first year, and events not to miss this week.

Eyes on the IRA

How did the IRA affect energy transition project development? Experts discussed the positive impacts — as well as the challenges still to overcome. Photo courtesy of Renewable Energy Alliance Houston

August 16 marked one year of the Inflation Reduction Act's enactment, and many have taken this first anniversary as an opportunity to look back on its effectiveness and where it's fallen short.

For Carbon Clean, a United Kingdom-founded company, the IRA made all the difference in its expansion into the United States — by way of Houston.

"The impact of the IRA cannot be overstated for our industry, especially for point source carbon capture technology companies like Carbon Clean," Co-Founder, Chair, and CEO Aniruddha Sharma shares with EnergyCapital in an interview. "The momentum created by the law's passage, along with our existing activity in North America, led to the opening of our US headquarters in Houston in March this year. We will double our US headcount to meet demand for CycloneCC, our breakthrough, fully modular carbon capture technology."

At a recent event at Rice University, experts zeroed in on the effect on clean energy project development. While the IRA opened doors for new funding, it also revealed shortcomings when it came to permitting.

"The IRA for developers has been very positive. It provided certainty and allowed developers and investors alike to plan long term," says Omar Aboudaher, senior vice president of development for Leeward Renewable Energy. "With that comes challenges, including exacerbating some existing problems with permitting."

Energy tech startup wins

These three startups have something to celebrate. Photo via Getty Images

Three energy tech startups had some big wins last week — let's take a look.

  • Nauticus Robotics, a Houston-based tech company providing software and hardtech solutions for industrial and government entities, secured a $2.1 million contract extension with one of its biggest clients. Read more.
  • France-based Engie announced that it will acquire Houston-based battery storage startup Broad Reach Power in $1 billion deal. The company launched in 2019 with backing from EnCap Energy Transition, an arm of Houston-based private equity firm EnCap Investments. Read more.
  • Austin-based energy software company P6 Technologies closed a $3.25 million seed round of funding with support from a handful of Houston investors from GOOSE Capital, Artemis Energy Partners, Tupper Lake Partners, and Veritec Ventures. Read more.

Upcoming events to put on your radar

Mark your calendars. Photo via Getty Images

Plan the rest of your August accordingly.

  • August 28-30 — Industrial IMMERSIVE Week attracts the most industrial, energy, and engineering tech professionals making investment, strategy and tactical decisions, or building, scaling and executing pioneering XR/3D/Simulations, digital twin, reality capture, edge /spatial computing, AI/ML, connected workforce & IIoT projects within their enterprise.
  • August 30 — 2023 Energy Research Day will be a showcase of outstanding energy-related research by University of Houston graduate and postdoctoral students. Sponsored by the Division of Research and Graduate School, the event gives industries in the Greater Houston area a chance to see UH research up close and network with future collaborators.
  • August 30-31 — Carbon & ESG Strategies Conference, presented by Hart Energy, will highlight carbon capture and storage projects and technologies onshore and offshore, direct air capture, enhanced oil recovery, responsibly sourced gas, renewable natural gas, federal funding challenges and insurance issues, ESG initiatives, regulatory concerns and much more.

How did the IRA affect energy transition project development? Experts discussed the positive impacts — as well as the challenges still to overcome. Photo courtesy of Renewable Energy Alliance Houston

Houston experts evaluate the impact of the IRA on cleantech project development

one year later

It's been officially a year since the Inflation Reduction Act was enacted, so it's no surprise that looking at the IRA's impact dominated the discussion at a recent industry event.

The second annual Renewable Energy Leadership Conference, presented by Renewable Energy Alliance Houston and Rice Business Executive Education, featured thought leadership from 20 experts on Tuesday, August 22. While some panels zeroed in on hiring and loan options for energy transition companies, the day's program kicked off with a couple panels looking both back and forward on the IRA.

When looking at the IRA's impact, the experts identified a few key things. Here's what they said at the conference.

Going beyond tax credits and regulation

Greg Matlock, EY's global energy and resources industry tax leader, kicked off the IRA discussion after John Berger, CEO of Sunnova, gave a keynote address.

Matlock set the scene for the IRA, explaining that previous legislation incentivizing clean energy changes mostly stayed within regulation and tax credits. Credits as a tax policy fail to incentivize organizations that are, for various reasons, are tax exempt or are already paying insignificant taxes. The fundamental switch of the IRA was to a "want to" rather than a "have to."

"Everyone has had aspirations, but with aspirations without capital, it's hard to get movement," Matlock says. "But what the IRA did was create a liquidity in the market and added access to an investor base. Now you're pairing aspirations and capital, and now you're seeing movement in the market."

The IRA, Matlock continues, also got the ball rolling on expanding requirements for tax incentives. Previously, a specific technology has to be clearly identified to be qualified for a credit. Moving forward, the IRA improved this qualification process and in the future, there will be be technology neutral incentives.

One thing Matlock also highlighted was the limitations of tax credits — dollar for dollar credit.

"Two years ago, if you called an organization that was tax exempt (about) a project that generates tax credits, why would that want that?" Matlock says. "For the first time, you can sell federal tax credits — not all of them — for cash and tax free to businesses who are paying taxes."

Explaining that there are limitations, Matlock says this process had a significant impact encouraging movement in this space — especially from surprising sources.

"We're seeing companies that have absolutely no connectivity to our energy industry making investments through the purchase of tax credits to fund the development of projects," Matlock says.

A focus on carbon capture and hydrogen

Matlock continues to explain how carbon capture and hydrogen became two case studies for the impact of the IRA.

Prior to the IRA, over 16 countries incentivized hydrogen production, he explains, and the United States was not one of them.

"With the signing of the IRA, we went from the worst to the first," Matlock says.

Carbon capture development was directed more at traditional energy industries. The IRA enactment represented a switch for these companies from regulatory moves to incentivization, which has been more effective in general, Matlock says.

Over the past year, according to the American Clean Power Association, more than $271 billion in investment in clean energy projects has occurred since the IRA was enacted. When it comes to jobs, over 170,000 clean energy jobs have been announced since the IRA.

Problematic permitting and pricing volatility 

In a subsequent panel, the three thought leaders looked at the IRA a bit more critically. While the IRA spurred momentum, it also shined a spotlight on some of the industry's challenges.

"The IRA for developers has been very positive. It provided certainty and allowed developers and investors alike to plan long term," says Omar Aboudaher, senior vice president of development for Leeward Renewable Energy. "With that comes challenges, including exacerbating some existing problems with permitting."

Aboudaher explains that the IRA-inspired burst of projects has caused a lot more permits for the increase of development. And, he adds, there's not a concentrated effort. It's happening in silos on the various levels of government.

"On the permitting side, there's a big need to streamline permitting," Aboudaher says. "In some parts of the country, it can take 6 to 10 years to permit your project."

On the investor side, it's also a problem, adds Fred Day, managing director of investments at Brookfield Asset Management.

"Even though we have this IRA, a lack of permitting reform does create a bottleneck," he says.

Another challenge is a disconnect between supply and demand. While the IRA has incentivized solar energy generation per hour of energy, meaning that its cheaper than ever to make energy via solar panels, there's not yet the demand infrastructure for this energy. This incentivization structure has already been in place for wind power.

"I think it's going to be a real problem. It's a real problem with wind today," Doug Moorehead, COO of Broad Reach Power, says, explaining that there's volatility in pricing. "When the wind is high, prices are really low. When wind is low, prices are high."

All of this is leading to an imbalance of market demand and supply, he continues. Jessica Adkins, partner at Sidley Austin LLP and moderator, adds that there's built in volatility for solar since solar energy is confined to the time of day when the sun is out.

"Any time you're incentivize to produce regardless of demand, it's going to be an issue," Moorehead says.

Aniruddha Sharma of Carbon Clean weighs in on his North American expansion, the impact of the Inflation Reduction Act, and more. Photo via carbonclean.com

Why this UK carbon capture co. expanded to Houston, IRA's impact, and more

Q&A

Earlier this year, a growing carbon capture company announced its new North American headquarters in Houston. Now, the company is focused on doubling it's headcount before the end of 2023 to meet demand.

Carbon Clean, which has a technology that has captured nearly two million tons of carbon dioxide at almost 50 sites around the world, opened its new office in the Ion earlier this year. The company is now building out its local supply chain with plans to rapidly expand.

In an interview with EnergyCapital, Co-Founder, Chair, and CEO Aniruddha Sharma weighs in on the new office, how pivotal the Inflation Reduction Act has been for his company's growth, and the future of Carbon Clean.

EnergyCapital: Looking back on the past year since the Inflation Reduction Act was enacted, what has the impact been on Carbon Clean?

Aniruddha Sharma: The IRA did much to jolt industry, incentivizing investment in carbon capture, while also telegraphing that the US government is getting serious about bringing emissions down. Overnight, the US became Carbon Clean's biggest growth opportunity: inquiries from industrial emitters leapt a staggering 64 percent.

The impact of the IRA cannot be overstated for our industry, especially for point source carbon capture technology companies like Carbon Clean. The momentum created by the law's passage, along with our existing activity in North America, led to the opening of our US headquarters in Houston in March this year. We will double our US headcount to meet demand for CycloneCC, our breakthrough, fully modular carbon capture technology.

EC: What does the sector still need to see — in terms of support from the government — to continue to move the needle on the energy transition?

AS: There's much to admire in the way that the IRA incentivizes business. While it involves billions of dollars of public investment, it is set up in such a way that companies must make substantial investments first. IRA funding doesn't arrive on day one — it comes over several years and to get to the first dollar of funding, a company must secure considerable private investment first. In other words, every single dollar of the IRA funding is unlocking additional private investment, creating high-paying jobs, and bringing manufacturing back home.

Of course, a lot of additional investment still needs to happen, and for some harder-to-abate sectors additional policy measures may be required to enable deployment at scale. The IRA is just a first step, but what a giant step it promises to be.

EC: You recently opened Carbon Clean's HQ in Houston. What's next for your company in terms of growth — especially here in Houston?

AS: We're experiencing phenomenal growth globally, but we expect our expansion in North America to outpace all other regions. In line with this, we've seen a surge in interest from industrials across the US and our newly-opened Houston office will help us to meet this demand.

We are establishing a very significant base in the US — doubling our headcount this year — and we are developing a local supply chain to support the commercialization of our breakthrough modular technology, CycloneCC.

The potential for CycloneCC in the US and Houston area is huge. It is optimised for low to medium scale industrial emitters and recent Rice University research on the US Gulf Coast, for example, found that it is well suited to 73% of Gulf Coast emitters.

We're currently working with Chevron on a carbon capture pilot for our CycloneCC technology on a gas turbine in San Joaquin Valley, California. We expect to be announcing additional carbon capture projects in the US in the coming months.

------

This conversation has been edited for brevity and clarity.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

What EPA’s carbon capture and storage permitting announcement means for Texas

The View From HETI

Earlier this month, Texas was granted authority by the federal government for permitting carbon capture and storage (CCS) projects. This move could help the U.S. cut emissions while staying competitive in the global energy game.

In June, the U.S. Environmental Protection Agency (EPA) proposed approving Texas’ request for permitting authority under the Safe Drinking Water Act (SDWA) for Class VI underground injection wells for carbon capture and storage (CCS) in the state under a process called “primacy.” The State of Texas already has permitting authority for other injection wells (Classes I-V). In November, the EPA announced final approval of Texas’ primacy request.

Why This Matters for Texas

Texas is the headquarters for virtually every segment of the energy industry. According to the U.S. Energy Information Administration, Texas is the top crude oil- and natural-gas producing state in the nation. The state has more crude oil refineries and refining capacity than any other state in the nation. Texas produces more electricity than any other state, and the demand for electricity will grow with the development of data centers and artificial intelligence (AI). Simply put, Texas is the backbone of the nation’s energy security and competitiveness. For the nation’s economic competitiveness, it is important that Texas continue to produce more energy with less emissions. CCS is widely regarded as necessary to continue to lower the emissions intensity of the U.S. industrial sector for critical products including power generation, refining, chemicals, steel, cement and other products that our country and world demand.

The Greater Houston Partnership’s Houston Energy Transition Initiative (HETI) has supported efforts to bring CCUS to a broader commercial scale since the initiative’s inception.

“Texas is uniquely positioned to deploy CCUS at scale, with world-class geology, a skilled workforce, and strong infrastructure. We applaud the EPA for granting Texas the authority to permit wells for CCUS, which we believe will result in safe and efficient permitting while advancing technologies that strengthen Texas’ leadership in the global energy market,” said Jane Stricker, Executive Director of HETI and Senior Vice President, Energy Transition at the Greater Houston Partnership.

What is Primacy, and Why is it Important?

Primacy grants permitting authority for Class VI wells for CCS to the Texas Railroad Commission instead of the EPA. Texas is required to follow the same strict standards the EPA uses. The EPA has reviewed Texas’ application and determined it meets those requirements.

Research suggests that Texas has strong geological formations for CO2 storage, a world-class, highly skilled workforce, and robust infrastructure primed for the deployment of CCS. However, federal permitting delays are stalling billions of dollars of private sector investment. There are currently 257 applications under review, nearly one-quarter of which are located in Texas, with some applications surpassing the EPA’s target review period of 24 months. This creates uncertainty for developers and investors and keeps thousands of potential jobs out of reach. By transferring permitting to the state, Texas will apply local resources to issue Class VI permits across the states in a timely manner.

Texas joins North Dakota, Wyoming, Louisiana, West Virginia and Arizona with the authority for regulating Class VI wells.

Is CCS safe?

A 2025 study by Texas A&M University reviewed operational history and academic literature on CCS in the United States. The study analyzed common concerns related to CCS efficacy and safety and found that CCS reduces pollutants including carbon dioxide, particulate matter, sulfur oxides and nitrogen oxides. The research found that the risks of CCS present a low probability of impacting human life and can be effectively managed through existing state and federal regulations and technical monitoring and safety protocols.

What’s Next?

The final rule granting Texas’ primacy will become effective 30 days after publication in the Federal Register. Once in effect, the Texas Railroad Commission will be responsible for permitting wells for carbon capture, use and storage and enforcing their safe operation.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Houston energy expert: How the U.S. can turn carbon into growth

Guets Column

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

UH launches new series on AI’s impact on the energy sector

where to be

The University of Houston's Energy Transition Institute has launched a new Energy in Action Seminar Series that will feature talks focused on the intersection of the energy industry and digitization trends, such as AI.

The first event in the series took place earlier this month, featuring Raiford Smith, global market lead for power & energy for Google Cloud, who presented "AI, Energy, and Data Centers." The talk discussed the benefits of widespread AI adoption for growth in traditional and low-carbon energy resources.

Future events include:

“Through this timely and informative seminar series, ETI will bring together energy professionals, researchers, students, and anyone working in or around digital innovation in energy," Debalina Sengupta, chief operating officer of ETI, said in a news release. "We encourage industry members and students to register now and reap the benefits of participating in both the seminar and the reception, which presents a fantastic opportunity to stay ahead of industry developments and build a strong network in the Greater Houston energy ecosystem.”

The series is slated to continue throughout 2026. Each presentation is followed by a one-hour networking reception. Register for the next event here.