Neara’s AI-enabled simulation and analytics platform can help CenterPoint reduce customer outages and accelerate restoration efforts. Photo via Getty Images

CenterPoint Energy announced an agreement with Artificial Intelligence-powered infrastructure modeling platform Neara for engineering-grade simulations and analytics, and to deploy Neara’s AI capabilities across CenterPoint’s Greater Houston service area.

“We are thrilled to collaborate with CenterPoint as they lead the charge in addressing today’s most existential energy challenges,” Robert Brook, senior vice president and managing director of Neara Americas, says in a news release.

Neara’s AI-enabled simulation and analytics platform can help CenterPoint reduce customer outages and accelerate restoration efforts. The technology can support CenterPoint’s efforts to address higher-risk vegetation along power lines, and identify equipment upgrades. Upgrades can include pole replacements or reinforcements. The platform will help CenterPoint to prioritize “assets and locations where grid hardening improvements will help optimize system-wide benefit,” per the release.

"Our 3D digital modeling technology will help CenterPoint proactively reduce customer outages by simulating severe weather events, such as hurricanes, tropical storms, heat waves and flash floods, and their potential impact on the utility’s infrastructure,” Brook says in the release.

CenterPoint recently announced the ahead of schedule completion of core resiliency actions as part of the first phase of its Greater Houston Resiliency Initiative (GHRI). This included a series of targeted actions to improve the resiliency of CenterPoint Houston Electric's grid with a second phase of GHRI that will include strategic undergrounding, system hardening, self-healing grid technology and enhancements to the company's outage tracker. These efforts are all part of a longer-term resilience plan.

“Leveraging technology and AI to deliver better outcomes for our customers and communities is a significant part of the commitment we made after Hurricane Beryl,” adds CenterPoint President and CEO Jason Wells in a news release. “By simulating the potential impact of severe weather events on our infrastructure and customers, Neara’s platform and tools will inform our plans and actions before, during and after major weather events to help reduce the impact and duration of power outages. Understanding how weather scenarios and their risks could affect our operations will position us to be several steps ahead on our preparedness and response.”

In the wake of Hurricane Beryl, CenterPoint Energy announced its Greater Houston Resiliency Initiative. The initiative will include an “accelerated timeline to execute specific actions to strengthen electric infrastructure across Houston, and more than 40 critical actions in total to strengthen the electric grid, and improve the company's customer communications and emergency coordination before the next hurricane,” according to the company.

Texas is expensive when it comes to weather events, a new report finds. Photo via Getty Images

Texas lands in top 10 states expected to be most financially affected by weather events

new report

Texas — home to everything from tornadoes to hurricanes — cracks the top 10 of a new report ranking states based on impact from weather-related events.

SmartAsset's new report factored in a myriad of data from the Federal Emergency Management Agency to identify which states face the most financial risk due to various weather events. In the report, the states were ranked by the total expected annual financial losses per person. Texas ranked at No. 10.

"With a variety of environmental events affecting the wide stretch of the United States, each state is subject to its own risks," reads the report. "Particularly, tornadoes, wildfires, hurricanes, flooding, landslides, lightning and drought, among other events, can cause damage to buildings, agriculture and individuals alike. When considering insurance, residents and business owners in each state should account for historic and projected losses due to environmental events in their financial plans."

In Texas, the total expected annual loss per person is estimated as $283.15. The report broke down each weather event as follows:

  • Coastal flooding: $1.49
  • Drought: $3.48
  • Earthquake: $1.71
  • Heat wave: $8.16
  • Hurricane: $89.22
  • Riverine flooding: $66.05
  • Strong wind: $5.37
  • Tornado: $71.04
  • Wildfire: $8.26
  • Winter weather: $1.96
Louisiana ranked as No. 1 on the list with $555.55 per person. The state with the lowest expected loss per person from weather events was Ohio with only $63.89 estimated per person.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

SLB partners with renewables company to develop next-gen geothermal systems

geothermal partnership

Houston-based energy technology company SLB and renewable energy company Ormat Technologies have teamed up to fast-track the development and commercialization of advanced geothermal technology.

Their initiative focuses on enhanced geothermal systems (EGS). These systems represent “the next generation of geothermal technology, meant to unlock geothermal energy in regions beyond where conventional geothermal resources exist,” the companies said in a news release.

After co-developing EGS technology, the companies will test it at an existing Ormat facility. Following the pilot project, SLB and Nevada-based Ormat will pursue large-scale EGS commercialization for utilities, data center operators and other customers. Ormat owns, operates, designs, makes and sells geothermal and recovered energy generation (REG) power plants.

“There is an urgent need to meet the growing demand for energy driven by AI and other factors. This requires accelerating the path to clean and reliable energy,” Gavin Rennick, president of new energy at SLB, said in a news release.

Traditional geothermal systems rely on natural hot water or steam reservoirs underground, limiting the use of geothermal technology. EGS projects are designed to create thermal reservoirs in naturally hot rock through which water can circulate, transferring the energy back to the surface for power generation and enabling broader availability of geothermal energy.

The U.S. Department of Energy estimates next-generation geothermal, such as EGS, could provide 90 gigawatts of electricity by 2050.

Baker Hughes to provide equipment for massive low-carbon ammonia plant

coming soon

Houston-based energy technology company Baker Hughes has been tapped to supply equipment for what will be the world’s largest low-carbon ammonia plant.

French technology and engineering company Technip Energies will buy a steam turbine generator and compression equipment from Baker Hughes for Blue Point Number One, a $4 billion low-carbon ammonia plant being developed in Louisiana by a joint venture comprising CF Industries, JERA and Mitsui & Co. Technip was awarded a contract worth at least $1.1 billion to provide services for the Blue Point project.

CF, a producer of ammonia and nitrogen, owns a 40 percent stake in the joint venture, with JERA, Japan’s largest power generator, at 35 percent and Mitsui, a Japanese industrial conglomerate, at 25 percent.

The Blue Point Number One project, to be located at CF’s Blue Point ammonia production facility, will be capable of producing about 1.4 million metric tons of low-carbon ammonia per year and permanently storing up to 2.3 million metric tons of carbon dioxide.

Construction of the ammonia-making facility is expected to start in 2026, with production of low-carbon ammonia set to get underway in 2029.

“Ammonia, as a lower-carbon energy source, is poised to play a pivotal role in enabling and accelerating global sustainable energy development,” Alessandro Bresciani, senior vice president of energy equipment at Baker Hughes, said in a news release.

Earlier this year, British engineering and industrial gas company Linde signed a long-term contract to supply industrial gases for Blue Point Number One. Linde Engineering Americas is based in Houston.

Houston expert asks: Is the Texas grid ready for the future?

Guets Column

Texas has spent the past five years racing to strengthen its electric grid after Winter Storm Uri exposed just how vulnerable it was. Billions have gone into new transmission lines, grid hardening, and a surge of renewables and batteries. Those moves have made a difference, we haven’t seen another systemwide blackout like Uri, but the question now isn’t what’s been done, it’s whether Texas can keep up with what’s coming.

Massive data centers, electric vehicles, and industrial projects are driving electricity demand to unprecedented levels. NERC recently boosted its 10-year load forecast for Texas by more than 60%. McKinsey projects that U.S. electricity demand will rise roughly 40% by 2030 and double by 2050, with data centers alone accounting for as much as 11-12% of total U.S. electricity demand by 2030, up from about 4% today. Texas, already the top destination for new data centers, will feel that surge at a greater scale.

While the challenges ahead are massive and there will undoubtedly be bumps in the road (some probably big), we have an engaged Texas legislature, capable regulatory bodies, active non-profits, pragmatic industry groups, and the best energy minds in the world working together to make a market-based system work. I am optimistic Texas will find a way.

Why Texas Faces a Unique Grid Challenge

About 90% of Texas is served by a single, independent grid operated by ERCOT, rather than being connected to the two large interstate grids that cover the rest of the country. This structure allows ERCOT to avoid federal oversight of its market design, although it still must comply with FERC reliability standards. The trade-off is limited access to power from neighboring states during emergencies, leaving Texas to rely almost entirely on in-state generation and reserves when extreme weather hits.

ERCOT’s market design is also different. It’s an “energy-only” market, meaning generators are paid for electricity sold, not for keeping capacity available. While that lowers prices in normal times, it also makes it harder to finance backup, dispatchable generation like natural gas and batteries needed when the wind isn’t blowing or the sun isn’t shining.

The Risks Mounting

In Texas, solar and wind power supply a significant percentage of electricity to the grid. As Julie Cohn, a nonresident scholar at the Baker Institute, explains, these inverter‑based resources “connect through power electronics, which means they don’t provide the same physical signals to the grid that traditional generators do.” The Odessa incidents, where solar farms tripped offline during minor grid disturbances, showed how fragile parts of this evolving grid can be. “Fortunately, it didn’t result in customer outages, and it was a clear signal that Texas has the opportunity to lead in solving this challenge.”

Extreme weather adds more pressure while the grid is trying to adapt to a surge in use. CES research manager Miaomiao Rimmer notes: “Hurricane frequencies haven't increased, but infrastructure and population in their paths have expanded dramatically. The same hurricane that hit 70 years ago would cause far more damage today because there’s simply more in harm’s way.”

Medlock: “Texas has made significant strides in the last 5 years, but there’s more work to be done.”

Ken Medlock, Senior Director of the Center for Energy Studies at Rice University’s Baker Institute, argues that Texas’s problem isn’t a lack of solutions; it’s how quickly those solutions are implemented. He stresses that during the January 2024 cold snap, natural gas kept the grid stable, proving that “any system configuration with sufficient, dispatchable generation capacity would have kept the lights on.” Yet ERCOT load has exceeded dispatchable capacity with growing frequency since 2018, raising the stakes for future reliability.

Ken notes: “ERCOT has a substantial portfolio of options, including investment in dispatchable generation, storage near industrial users, transmission expansion, and siting generation closer to load centers. But allowing structural risks to reliability that can be avoided at a reasonable cost is unacceptable. Appropriate market design and sufficient regulatory oversight are critical.” He emphasizes that reliability must be explicitly priced into ERCOT’s market so backup resources can be built and maintained profitably. These resources, whether natural gas, nuclear, or batteries, cannot remain afterthoughts if Texas wants a stable grid.

Building a More Reliable Grid

For Texas to keep pace with rising demand and withstand severe weather, it must act decisively on multiple fronts, strengthening its grid while building for long-term growth.

  • Coordinated Planning: Align regulators, utilities, and market players to plan decades ahead, not just for next summer.
  • Balancing Clean and Reliable Power: Match renewable growth with flexible, dispatchable generation that can deliver power on demand.
  • Fixing Local Weak Spots: Harden distribution networks, where most outages occur, rather than focusing only on large-scale generation.
  • Market Reform and Technology Investment: Price reliability fairly and support R&D to make renewables strengthen, not destabilize, the grid.

In Conclusion

While Texas has undeniably improved its grid since Winter Storm Uri, surging electricity demand and intensifying weather mean the work is far from over. Unlike other states, ERCOT can’t rely on its neighbors for backup power, and its market structure makes new dispatchable resources harder to build. Decisive leadership, investment, and reforms will be needed to ensure Texas can keep the lights on.

It probably won’t be a smooth journey, but my sense is that Texas will solve these problems and do something spectacular. It will deliver more power with fewer emissions, faster than skeptics believe, and surprise us all.

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.