Balancing renewable energy growth and grid resilience requires a multifaceted approach. Photo via Getty Images

The global energy sector is on an exhilarating trajectory, teeming with promising technologies and unprecedented opportunities for a sustainable future. Yet, we find ourselves grappling with the challenges of reliability and affordability. As both a researcher in the field of power electronics and a consumer with bills to pay, I find myself experiencing mixed feelings.

As a researcher, I am thrilled by the progress we have achieved, particularly in energy conversion. The exponential growth of renewable energy technologies in Texas and beyond, including wind turbines and solar PV systems, is cause for celebration. These innovations, coupled with supportive policies, have facilitated widespread deployment and the potential to significantly reduce greenhouse gas emissions, combat climate change, and create a brighter future for our children.

While renewable energy resources can play a crucial role in maintaining the supply-demand balance of the grid, as they did by performing very well during the recent 2023 Texas heat wave, their intermittent and unpredictable nature can also pose a significant challenge to the power system. Unlike traditional power plants that operate continuously, wind turbines and solar PV systems rely on weather conditions for optimal performance. Fluctuations in wind speed, cloud cover, and sunlight intensity can lead to imbalances between energy supply and demand. This imbalance will worsen as the anticipated influx of electric vehicles and their charging needs come into play.

The volatility of renewables contributes to price fluctuations in the electricity market, which not only affects consumers but also raises concerns about grid resilience during extreme weather events. My electricity bill increased by over 20 percent compared to last year, partly caused by inflation, but mainly due to higher operational costs in the Texas electricity market.

Texas witnessed firsthand the consequences of a not-so-resilient grid through the severe power outages experienced during the "Polar Vortex" in February 2021. These outages not only disrupted lives but also disproportionately impacted vulnerable populations. During that time, my wife was expecting our second child. Enduring two nights in our frigid home without electricity or a fireplace was an ordeal that we navigated relatively unscathed. But it made me think of those less fortunate. These circumstances underscore the importance of establishing a robust, dependable and affordable electrical power system.

Balancing renewable energy growth and grid resilience requires a multifaceted approach:

  1. Investment in Infrastructure and Storage: It is crucial to strengthen the grid and ensure a reliable power supply. Upgrading transmission and distribution systems, integrating advanced monitoring and control technologies, and enhancing grid interconnections are essential. The Texas Legislature established the Powering Texas Forward Act, also known as Senate Bill 2627, a taxpayer-funded loan program, to encourage investment. While excluding certain renewable energy facilities and electric energy storage, it recognizes the need for a reliable grid. Hydrogen fuel cell generation facilities could be a potential solution, providing clean and stable energy while remaining eligible for the loan program. Additionally, implementing large-scale energy storage systems utilizing batteries and hydrogen storage technologies can mitigate renewable energy volatility by storing excess energy until needed. The Texas energy industry's push for these advances is a significant step in the right direction.
  2. Diversification of Energy Sources: While renewables play a crucial role in decarbonization, a mix of renewable sources, natural gas, and other low-carbon resources is necessary for the foreseeable future. Implementing carbon capture, utilization, and storage (CCUS) technologies across industries can mitigate associated climate impacts. The failure of Senate Bill 624, which would have had significant repercussions for wind and solar facilities, indicates that Texas legislators are genuinely concerned about clean, alternative sources of energy. However, a lot more needs to be done, including coordinated actions between federal, state, and international governments, to address the urgent issue of climate change. Texas can leverage its hydrocarbon/energy expertise to produce economical green and blue hydrogen, advanced fuel cells and hydrogen-based internal combustion engine technologies, enabling a smoother energy transition in terms of usage and jobs.
  3. Educating the General Public: It is critical to help people understand the necessity of modernizing our energy infrastructure; the benefits and opportunities it brings and the transformations we can expect. Institutions like the University of Houston play a crucial role in advancing clean energy technologies and educating the future energy workforce. The establishment of the Texas University Fund (TUF), with a budget of over $3 billion, through a constitutional amendment in November 2023, will be a pivotal step toward this goal.

When addressing the energy transformation and grid resilience dilemma, the real-life impact on human beings must be of prime importance. Our leaders should focus on a balanced approach considering grid infrastructure investment, diversification of energy sources, energy storage solutions, and public education. By adopting this multifaceted strategy, we can ensure a reliable, resilient, and affordable energy future.

———

Harish Krishnamoorthy is an assistant professor of electrical and computer engineering and associate director of the Power Electronics, Microgrids and Subsea Electric Systems Center (PEMSEC) at the University of Houston.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Chevron CEO touts biofuels as part of its renewable energy efforts

Betting on biofuels

As Chevron Chairman and CEO Mike Wirth surveys the renewable energy landscape, he sees the most potential in biofuels.

At a recent WSJ CEO Council event, Wirth put a particular emphasis on biofuels—the most established form of renewable energy—among the mix of low-carbon energy sources. According to Biofuels International, Chevron operates nine biorefineries around the world.

Biofuels are made from fats and oils, such as canola oil, soybean oil and used cooking oil.

At Chevron’s renewable diesel plant in Geismar, Louisiana, a recent expansion boosted annual production by 278 percent — from 90 million gallons to 340 million gallons. To drive innovation in the low-carbon-fuels sector, Chevron opened a technology center this summer at its renewable energy campus in Ames, Iowa.

Across the board, Chevron has earmarked $8 billion to advance its low-carbon business by 2028.

In addition to biofuels, Chevron’s low-carbon strategy includes hydrogen, although Wirth said hydrogen “is proving to be very difficult” because “you’re fighting the laws of thermodynamics.”

Nonetheless, Chevron is heavily invested in the hydrogen market:

As for geothermal energy, Wirth said it shows “some real promise.” Chevron’s plans for this segment of the renewable energy industry include a 20-megawatt geothermal pilot project in Northern California, according to the California Community Choice Association. The project is part of an initiative that aims to eventually produce 600 megawatts of geothermal energy.

What about solar and wind power?

“We start with things where we have some reason to believe we can create shareholder value, where we’ve got skills and competency, so we didn’t go into wind or solar because we’re not a turbine manufacturer installing wind and solar,” he said in remarks reported by The Wall Street Journal.

In a September interview with The New York Times, Wirth touched on Chevron’s green energy capabilities.

“We are investing in new technologies, like hydrogen, carbon capture and storage, lithium and renewable fuels,” Wirth said. “They are growing fast but off a very small base. We need to do things that meet demand as it exists and then evolve as demand evolves.”

Houston robotics company partners with Marathon Petroleum to scale fleet

robot alliance

Houston- and Boston-based Square Robot Inc. has announced a partnership with downstream and midstream energy giant Marathon Petroleum Corp. (NYSE: MPC).

The partnership comes with an undisclosed amount of funding from Marathon, which Square Robot says will help "shape the design and development" of its submersible robotics platform and scale its fleet for nationwide tank inspections.

“Marathon’s partnership marks a major milestone in our mission to transform industrial tank inspection,” David Lamont, CEO of Square Robot, said in a news release. “They recognize the proven value of our robotic inspections—eliminating confined space entry, reducing the environmental impact, and delivering major cost efficiencies all while keeping tanks on-line and working. We’re excited to work together with such a great company to expand inspection capabilities and accelerate innovation across the industry.”

The company closed a $13 million series B last year. At the time of closing, Square Robot said it would put the funding toward international expansion in Europe and the Middle East.

Square Robot develops autonomous, submersible robots that are used for storage tank inspections and eliminate the need for humans to enter dangerous and toxic environments. Its newest tank inspection robot, known as the SR-3HT, became commercially available and certified to operate at a broader temperature range than previous models in the company's portfolio this fall.

The company was first founded in the Boston area in 2016 and launched its Houston office in 2019.