The Houston projects involve the innovative reuse of oil rig platforms and wind turbines. Courtesy rendering

UH projects propose innovative reuse of wind turbines and more on Gulf Coast

Forward-thinking

Two University of Houston science projects have been selected as finalists for the Gulf Futures Challenge, which will award a total of $50 million to develop ideas that help benefit the Gulf Coast.

Sponsored by the National Academies of Science, Engineering and Medicine’s Gulf Coast Research Program and Lever for Change, the competition is designed to spark innovation around problems in the Gulf Coast, such as rising sea levels, pollution, energy security, and community resiliency. The two UH projects beat out 162 entries from organizations based in Alabama, Florida, Louisiana, Mississippi, and Texas.

“Being named a finalist for this highly competitive grant underscores the University of Houston’s role as a leading research institution committed to addressing the most pressing challenges facing our region,” said Claudia Neuhauser, vice president for research at UH.

“This opportunity affirms the strength of our faculty and researchers and highlights UH’s capacity to deliver innovative solutions that will ensure the long-term stability and resilience of the Gulf Coast.”

One project, spearheaded by the UH Repurposing Offshore Infrastructure for Continued Energy (ROICE) program, is studying ways to use decommissioned oil rig platforms in the Gulf of Mexico as both clean energy hydrogen power generators as well a marine habitats. There are currently thousands of such platforms in the Gulf.

The other project involves the innovative recycling of wind turbines into seawall and coastal habitats. Broken and abandoned wind turbine blades have traditionally been thought to be non-recyclable and end up taking up incredible space in landfills. Headed by a partnership between UH, Tulane University, the University of Texas Health Science Center at Houston, the city of Galveston and other organizations, this initiative could vastly reduce the waste associated with wind farm technology.

wind turbine recycled for Gulf Coast seawall.Wind turbines would be repurposed into seawalls and more. Courtesy rendering

"Coastal communities face escalating threats from climate change — land erosion, structural corrosion, property damage and negative health impacts,” said Gangbing Song, Moores Professor of Mechanical and Aerospace Engineering at UH and the lead investigator for both projects.

“Leveraging the durability and anti-corrosive properties of these of decommissioned wind turbine blades, we will build coastal structures, improve green spaces and advance the resilience and health of Gulf Coast communities through integrated research, education and outreach.”

The two projects have received a development grant of $300,000 as a prize for making it to the finals. When the winner are announced in early 2026, two of the projects will net $20 million each to bring their vision to life, with the rest earning a consolation prize of $875,000, in additional project support.

In the event that UH doesn't grab the grand prize, the school's scientific innovation will earn a guaranteed $1.75 million for the betterment of the Gulf Coast.

---

This article originally appeared on CultureMap.com.

A new study from the University of Texas at Austin shows that new hydrogen production facilities could account for 2 percent to nearly 7 percent of the state's water demand by 2050. Photo via Getty Images.

Hydrogen industry could have major impact on Texas water resources, study says

water works

Just as the data center industry thrives on electricity, the hydrogen industry thrives on water.

A new study from researchers at the University of Texas at Austin found that by 2050, new hydrogen production facilities could account for 2 percent to nearly 7 percent of water demand in the state. The impact could be especially dramatic along the Gulf Coast, where most of the state’s hydrogen production facilities are already built or are being planned.

The research was published in the journal Sustainability.

The study reported that "most existing and proposed hydrogen production infrastructures are within projected water-strained cities and counties, such as Houston in Harris County and Corpus Christi in Nueces County."

Compared with municipal water supplies or irrigation systems, the hydrogen industry’s demand for water is comparatively small, the study’s lead author, Ning Lin, an energy economist at UT’s Bureau of Economic Geology, said in a news release. But hydrogen-fueled demand could strain communities that already are grappling with current and future water shortages.

“Where you put a project can make a huge difference locally,” Lin says. “With multiple hydrogen facilities planned in water-stressed Gulf Coast counties, this study highlights the urgent need for integrated water and energy planning and provides a solid foundation to help policymakers, industry, and communities make informed decisions about hydrogen and water management.”

To forecast water demand, Lin and her colleagues crunched data from a 2024 National Petroleum Council study that estimated the regional hydrogen demand from 2030 to 2050 based on two energy policy scenarios.

As part of the study, researchers reviewed water use and water quality for various hydrogen production methods that affect whether water remaining from production can be recycled.

“In order to plan for water needs, somebody has to figure out what those future demands might look like, and this paper puts some numbers to (it) that, I think, will be very helpful,” Robert Mace, executive director of the Meadows Center for Water and the Environment at Texas State University, who was not part of the study, added in the release.

The technology demonstration will be used to deploy Carbon Clean’s novel CycloneCC technology to capture CO2 from natural gas turbine exhaust streams. Photo via Carbon Clean

Aramco partners to demonstrate compact carbon capture technology for gas turbines

dream team

Integrated energy and chemicals company Aramco has signed a collaboration agreement with Carbon Clean and SAMSUNG E&A in an effort to showcase new carbon capture technology.

The technology demonstration will be used to deploy Carbon Clean’s novel CycloneCC technology to capture CO2 from natural gas turbine exhaust streams containing approximately 4 percent CO2, according to Aramco.

Carbon Clean, which U.S. headquarters are located in Houston at the Ion, boasts technology that has captured nearly two million tons of carbon dioxide at almost 50 sites around the world. Aramco’s U.S. headquarters is also in Houston.

“The potential for CycloneCC in the US and Houston area is huge,” Aniruddha Sharma, chair and CEO of Carbon Clean, previously shared with EnergyCapital. “It is optimised for low to medium scale industrial emitters and recent Rice University research on the US Gulf Coast, for example, found that it is well suited to 73 percent of Gulf Coast emitters.”

The modular CycloneCC unit has a 50 percent smaller footprint compared to conventional carbon capture processes. The CycloneCC technology is estimated to reduce the total installed cost of carbon capture systems by up to 50 percent compared to conventional systems if successful. The goal is to also maintain process efficiency even at low CO2 concentrations. CycloneCC’s performance is achieved through two process intensification technologies, rotating packed beds (RPBs) and Carbon Clean’s proprietary APBS-CDRMax solvent.

“Its compact, modular design should be easily integrated with gas turbines, delivering high performance carbon capture in an industrial setting where space is typically limited,” Sharma says in a news release.

The engineering, procurement and construction of the plant will be done by SAMSUNG E&A .The unit will be installed on the sales gas compressor turbine exhaust gas stack,which can provide performance data under real-world conditions.

“Aramco and Samsung Ventures are investors in Carbon Clean, so we’re proud to deepen our relationship through this partnership,” Sharma adds. “This first-of-a-kind deployment capturing very low concentrations of CO2 is a key milestone in scaling up and commercializing CycloneCC.”

In September, Carbon Clean also announced a deal with PETRONAS CCS Solution to collaborate and evaluate Carbon Clean’s carbon capture and storage technology with Carbon Clean's CycloneCC tech. Last year, Abu Dhabi National Oil Co. (ADNOC) selected Carbon Clean for a carbon capture project in Abu Dhabi.
The offshore site is adjacent to a CO2 pipeline network that ExxonMobil acquired in 2023 with its $4.9 billion purchase of Plano-based Denbury Resources. Photo via ExxonMobil.com

ExxonMobil signs biggest offshore CCS lease in the U.S.

big deal

Spring-based ExxonMobil continues to ramp up its carbon capture and storage business with a new offshore lease and a new CCS customer.

On October 10, ExxonMobil announced it had signed the biggest offshore carbon dioxide storage lease in the U.S. ExxonMobil says the more than 271,000-acre site, being leased from the Texas General Land Office, complements the onshore CO2 storage portfolio that it’s assembling.

“This is yet another sign of our commitment to CCS and the strides we’ve been able to make,” Dan Ammann, president of ExxonMobil Low Carbon Solutions, says in a news release.

The offshore site is adjacent to a CO2 pipeline network that ExxonMobil acquired in 2023 with its $4.9 billion purchase of Plano-based Denbury Resources.

Ammann told Forbes that when it comes to available acreage in the Gulf Coast, this site is “the largest and most attractive from a geological point of view.”

The initial customer for the newly purchased site will be Northbrook, Illinois-based CF Industries, Forbes reported.

This summer, ExxonMobil sealed a deal to remove up to 500,000 metric tons of CO2 each year from CF’s nitrogen plant in Yazoo City, Mississippi. CF has earmarked about $100 million to build a CO2 dehydration and compression unit at the plant.

A couple of days before the lease announcement, Ammann said in a LinkedIn post that ExxonMobil had agreed to transport and annually store up to 1.2 metric tons of CO2 from the $1.6 billion New Generation Gas Gathering (NG3) pipeline project in Louisiana. Houston-based Momentum Midstream is developing NG3, which will collect and treat natural gas produced in Texas and Louisiana and deliver it to Gulf Coast markets.

This is ExxonMobil’s first CCS deal with a natural gas processor and fifth CCS deal agreement overall. To date, ExxonMobil has contracts in place for storage of up to 6.7 metric tons of CO2 per year.

“I’m proud that even more industries are choosing our #CCS solutions to meet their emissions reduction goals,” Ammann wrote on LinkedIn.

ExxonMobil says it operates the largest CO2 pipeline network in the U.S.

“The most fundamental thing we’re focused on is making sure the CO2 is stored safely and securely,” Ammann told Forbes in addressing fears that captured CO2 could seep back into the atmosphere.

The International Longshoremen’s Association is suspending its three-day strike until Jan. 15 to provide time to negotiate a new contract. Photo from Port Houston

Dockworkers' union suspends strike until new year to allow time to negotiate new contract

pressing pause

Some 45,000 dockworkers at East and Gulf coast ports are returning to work after their union reached a deal to suspend a strike that could have caused shortages and higher prices if it had dragged on.

The International Longshoremen’s Association is suspending its three-day strike until Jan. 15 to provide time to negotiate a new contract. The union and the U.S. Maritime Alliance, which represents ports and shipping companies, said in a joint statement that they have reached a tentative agreement on wages.

A person briefed on the agreement said the ports sweetened their wage offer from about 50% over six years to 62%. The person didn’t want to be identified because the agreement is tentative. Any wage increase would have to be approved by union members as part of the ratification of a final contract.

Talks now turn to the automation of ports, which the unions says will lead to fewer jobs, and other sticking points.

Industry analysts have said that for every day of a port strike it takes four to six days to recover. But they said a short strike of a few days probably wouldn’t gum up the supply chain too badly.

The settlement pushes the strike and any potential shortages past the November presidential election, eliminating a potential liability for Vice President Kamala Harris, the Democratic nominee. It’s also a big plus for the Biden-Harris administration, which has billed itself as the most union-friendly in American history. Shortages could have driven up prices and reignited inflation.

The union went on strike early Tuesday after its contract expired in a dispute over pay and the automation of tasks at 36 ports stretching from Maine to Texas. The strike came at the peak of the holiday season at the ports, which handle about half the cargo from ships coming into and out of the United States.

Most retailers had stocked up or shipped items early in anticipation of the strike.

“With the grace of God, and the goodwill of neighbors, it’s gonna hold,” President Joe Biden told reporters Thursday night after the agreement.

In a statement later, Biden applauded both sides “for acting patriotically to reopen our ports and ensure the availability of critical supplies for Hurricane Helene recovery and rebuilding.”

Biden said that collective bargaining is “critical to building a stronger economy from the middle out and the bottom up.”

The union's membership won't need to vote on the temporary suspension of the strike. Until Jan. 15, the workers will be covered under the old contract, which expired on Sept. 30.

The union had been demanding a 77% raise over six years, plus a complete ban on the use of automation at the ports, which members see as a threat to their jobs. Both sides also have been apart on the issues of pension contributions and the distribution of royalties paid on containers that are moved by workers.

Thomas Kohler, who teaches labor and employment law at Boston College, said the agreement to halt the strike means that the two sides are close to a final deal.

“I’m sure that if they weren’t going anywhere they wouldn’t have suspended (the strike),” he said. “They’ve got wages. They’ll work out the language on automation, and I’m sure that what this really means is it gives the parties time to sit down and get exactly the language they can both live with.”

Kohler said the surprise end to the strike may catch railroads with cars, engines and crews out of position. But railroads are likely to work quickly to fix that.

Just before the strike had begun, the Maritime Alliance said both sides had moved off their original wage offers, a tentative sign of progress.

Thursday's deal came after Biden administration officials met with foreign-owned shipping companies before dawn on Zoom, according to a person briefed on the day's events who asked not to be identified because the talks were private. The White House wanted to increase pressure to settle, emphasizing the responsibility to reopen the ports to help with recovery from Hurricane Helene, the person said.

Acting Labor Secretary Julie Su told them she could get the union to the bargaining table to extend the contract if the carriers made a higher wage offer. Chief of Staff Jeff Zients told the carriers they had to make an offer by the end of the day so a manmade strike wouldn't worsen a natural disaster, the person said.

By midday the Maritime Alliance members agreed to a large increase, bringing about the agreement, according to the person.

____

AP Writers Darlene Superville and Josh Boak in Washington and Annie Mulligan in Houston contributed to this report.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Reliant partners to expand Texas virtual power plant and home battery use

energy incentives

Houston’s Reliant and San Francisco tech company GoodLeap are teaming up to bolster residential battery participation and accelerate the growth of NRG’s virtual power plant (VPP) network in Texas.

Through the new partnership, eligible Reliant customers can either lease a battery or enter into a power purchase agreement with GoodLeap through its GoodGrid program, which incentivises users by offering monthly performance-based rewards for contributing stored power to the grid. Through the Reliant GoodLeap VPP Battery Program, customers will start earning $40 per month in rewards from GoodLeap.

“These incentives highlight our commitment to making homeowner battery adoption more accessible, effectively offsetting the cost of the battery and making the upgrade a no-cost addition to their homes,” Dan Lotano, COO at GoodLeap, said in a news release.“We’re proud to work with NRG to unlock the next frontier in distributed energy in Texas. This marks an important step in GoodLeap reaching our nationwide goal of 1.5 GW of managed distributed energy over the next five years.”

Other features of the program include power outage plans, with battery reserves set aside for outage events. The plan also intelligently manages the battery without homeowner interaction.

The partnership comes as Reliant’s parent company, NRG, continues to scale its VPP program. Last year, NRG partnered with California-based Renew Home to distribute hundreds of thousands of VPP-enabled smart thermostats by 2035 in an effort to help households manage and lower their energy costs.

“We started building our VPP with smart thermostats across Texas, and now this partnership with GoodLeap brings home battery storage into our platform,” Mark Parsons, senior vice president and head of Texas energy at NRG, said in a the release. “Each time we add new devices, we’re enabling Texans to unlock new value from their homes, earn rewards and help build a more resilient grid for everyone. This is about giving customers the opportunity to actively participate in the energy transition and receive tangible benefits for themselves and their communities.

How Corrolytics is tackling industrial corrosion and cutting emissions

now streaming

Corrosion is not something most people think about, but for Houston's industrial backbone pipelines, refineries, chemical plants, and water infrastructure, it is a silent and costly threat. Replacing damaged steel and overusing chemicals adds hundreds of millions of tons of carbon emissions every year. Despite the scale of the problem, corrosion detection has barely changed in decades.

In a recent episode of the Energy Tech Startups Podcast, Anwar Sadek, founder and CEO of Corrolytics, explained why the traditional approach is not working and how his team is delivering real-time visibility into one of the most overlooked challenges in the energy transition.

From Lab Insight to Industrial Breakthrough

Anwar began as a researcher studying how metals degrade and how microbes accelerate corrosion. He quickly noticed a major gap. Companies could detect the presence of microorganisms, but they could not tell whether those microbes were actually causing corrosion or how quickly the damage was happening. Most tests required shipping samples to a lab and waiting months for results, long after conditions inside the asset had changed.

That gap inspired Corrolytics' breakthrough. The company developed a portable, real-time electrochemical test that measures microbial corrosion activity directly from fluid samples. No invasive probes. No complex lab work. Just the immediate data operators can act on.

“It is like switching from film to digital photography,” Anwar says. “What used to take months now takes a couple of hours.”

Why Corrosion Matters in Houston's Energy Transition

Houston's energy transition is a blend of innovation and practicality. While the world builds new low-carbon systems, the region still depends on existing industrial infrastructure. Keeping those assets safe, efficient, and emission-conscious is essential.

This is where Corrolytics fits in. Every leak prevented, every pipeline protected, and every unnecessary gallon of biocide avoided reduces emissions and improves operational safety. The company is already seeing interest across oil and gas, petrochemicals, water and wastewater treatment, HVAC, industrial cooling, and biofuels. If fluids move through metal, microbial corrosion can occur, and Corrolytics can detect it.

Because microbes evolve quickly, slow testing methods simply cannot keep up. “By the time a company gets lab results, the environment has changed completely,” Anwar explains. “You cannot manage what you cannot measure.”

A Scientist Steps Into the CEO Role

Anwar did not plan to become a CEO. But through the National Science Foundation's ICorps program, he interviewed more than 300 industry stakeholders. Over 95 percent cited microbial corrosion as a major issue with no effective tool to address it. That validation pushed him to transform his research into a product.

Since then, Corrolytics has moved from prototype to real-world pilots in Brazil and Houston, with early partners already using the technology and some preparing to invest. Along the way, Anwar learned to lead teams, speak the language of industry, and guide the company through challenges. “When things go wrong, and they do, it is the CEO's job to steady the team,” he says.

Why Houston

Relocating to Houston accelerated everything. Customers, partners, advisors, and manufacturing talent are all here. For industrial and energy tech startups, Houston offers an ecosystem built for scale.

What's Next

Corrolytics is preparing for broader pilots, commercial partnerships, and team growth as it continues its fundraising efforts. For anyone focused on asset integrity, emissions reduction, or industrial innovation, this is a company to watch.

Listen to the full conversation with Anwar Sadek on the Energy Tech Startups Podcast to learn more:

---

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.


Investors close partial acquisition of Phillips 66 subsidiary with growing EV network

M&A activity

Energy Equation Partners, a London-based investment firm focused on clean energy companies, and New York-based Stonepeak have completed the acquisition of a 65 percent interest in JET Tankstellen Deutschland GmbH, a subsidiary of Houston oil and gas giant Phillips 66.

JET is one of the largest and most popular fuel retailers in Germany and Austria with a rapidly growing EV charging network, according to a news release. It also operates approximately 970 service stations, convenience stores and car washes.

“We are delighted to complete this acquisition and to partner with Stonepeak and Phillips 66 to take JET to the next level,” Javed Ahmed, managing partner of Energy Equation Partners, said in a news release. “This investment reflects EEP’s commitment to investing in established players in the energy sector who have the potential to make a meaningful impact on the energy transition, and we are excited to work alongside the entire JET team, including its dedicated service station operators, to realize this vision.”

The deal values JET at approximately $2.8 billion. Phillips 66 will retain a 35 percent non-operated interest in JET and received about $1.6 billion in pre-tax proceeds.

“Under Phillips 66’s ownership, JET has grown into one of the largest fuel retailers in Germany and Austria," Anthony Borreca, senior managing director and co-head of energy at Stonepeak, added in a news release. "We are excited to join forces with them, as well as Javed and the EEP team, who have long-standing experience investing in and operating retail fuel distribution and logistics globally, to support the next phase of JET’s growth.”