Tim Latimer, CEO and co-founder of Fervo Energy, has been named to the TIME100 Next. Photo courtesy of Fervo Energy

What do pop star Sabrina Carpenter and Houston geothermal energy founder Tim Latimer have in common? In addition to their successful summers in their respective industries, they both also were named influential leaders on the TIME100 Next list for 2024.

For the fifth year, Time magazine released the annual list that was established to honor influential leaders "who are not waiting long in life to make an impact," reads the announcement article, continuing, "TIME100 Next has no age requirements; its aim is to recognize that influence does not have them either, nor does leadership look like it once did."

Representing Houston, Latimer was selected for his work in geothermal energy innovation. His company, Fervo Energy, has reached numerous milestones over its seven years of existence, garnering partnerships with the likes of Google and Devon Energy and raising an estimated $531 million in venture capital investment. Last month, the company announced it received a $100 million bridge loan from an affiliate of Irvington, New York-based X-Caliber Rural Capital for the first phase of its ongoing Cape Station project, which is being touted as the world’s largest geothermal energy plant.

"At a time when emission reductions are vital, energy demand has surged to a record high as a boom in AI and data centers pushes our nation’s grid to the brink," writes Tom Steyer, co–­executive chair of Galvanize Climate Solutions, which invests in Fervo Energy, in a Time article. "Leveraging multiple forms of renewable energy will be critical to meeting this demand and advancing the climate transition.

"One such solution is geothermal, which could eliminate close to 800 megatonnes of emissions annually by 2050," he continues. "Latimer uses fracking technology to supercharge the output of geothermal wells. Last year, in collaboration with Google, his startup piloted a first-of-its-kind commercial-­scale power plant, and in November, the Nevada plant (Project Red) began pumping electricity into Google data centers. Getting juice to the grid is a key milestone for energy startups—and one many never reach."

In an interview with InnovationMap for the Houston Innovators Podcast, Latimer reported that Fervo is growing and scaling at around a 100x pace. While Fervo's first project, Project Red, included three wells, Project Cape, a Southwest Utah site, will include around 100 wells with significantly reduced drilling cost and an estimated 2026 delivery. Latimer says there are a dozen other projects like Project Cape that are in the works.

"It's a huge ramp up in our drilling, construction, and powerplant programs from our pilot project, but we've already had tremendous success there," Latimer says of Project Cape. "We think our technology has a really bright future."

While Latimer looks ahead to the rapid growth of Fervo Energy, he says it's all due to the foundation he put in place for the company, which has a culture built on the motto, "Build things that last."

“You’re not going to get somewhere that really changes the world by cutting corners and taking short steps. And, if you want to move the needle on something as complicated as the global energy system that has been built up over hundreds of years with trillions of dollars of capital invested in it – you’re not going to do it overnight," he says on the show. "We’re all in this for the long haul together."


Through a first-of-its-kind proposal, Las Vegas-based public utility NV Energy would supply geothermal power generated by Fervo Energy for Google’s two data centers in Nevada. Screenshot via Google

Houston geothermal company grows relationship with Google to provide power to Nevada

powering up

Houston-based Fervo Energy’s geothermal energy soon will help power the world’s most popular website.

Through a first-of-its-kind proposal, Las Vegas-based public utility NV Energy would supply 115 megawatts of geothermal power generated by Fervo for Google’s two data centers in Nevada. Financial terms weren’t disclosed.

In 2021, Google teamed up with Fervo to develop a pilot project for geothermal power in Nevada. Two years later, electricity from this project started flowing into the Nevada grid serving the two Google data centers. Google spent $600 million to build each of the centers, which are in Henderson, a Las Vegas suburb, and Storey County, which is east of Reno.

The proposed agreement with NV Energy would bring about 25 times more geothermal power capacity to the Nevada grid, Google says, and enable more around-the-clock clean power for the search engine company’s Nevada data centers.

A data center gobbles up 10 to 50 times the energy per square foot of floor space that a typical office building does, according to the U.S. Department of Energy.

“NV Energy and Google’s partnership to develop new solutions to bring clean … energy technology — like enhanced geothermal — onto Nevada’s grid at this scale is remarkable. This innovative proposal will not be paid for by NV Energy’s other customers but will help ensure all our customers benefit from cleaner, greener energy resources,” Doug Cannon, president and CEO of NV Energy, says in a Google blog post.

Utility regulators still must sign off on the proposal.

“If approved, it provides a blueprint for other utilities and large customers in Nevada to accelerate clean energy goals,” Cannon says.

Houston-based Fervo Energy shared the results of its commercial pilot project with Google. Photo via Getty Images

Houston geothermal energy company announces major milestone

the results are in

A Houston energy startup has announced the news that every early-stage company wants to get to shout from the rooftops: the technology works.

Fervo Energy announced this week that its commercial pilot project has resulted in continuous carbon-free geothermal energy production. The full-scale commercial pilot, Project Red, is in northern Nevada and made possible through a 2021 partnership with Google.

“By applying drilling technology from the oil and gas industry, we have proven that we can produce 24/7 carbon-free energy resources in new geographies across the world," Tim Latimer, Fervo Energy CEO and co-founder, says in a news release. "The incredible results we share today are the product of many years of dedicated work and commitment from Fervo employees and industry partners, especially Google."

The goal of the partnership is to power Google’s Cloud region in Las Vegas with Fervo's geothermal-generated power.

“Achieving our goal of operating on 24/7 carbon-free energy will require new sources of firm, clean power to complement variable renewables like wind and solar,” adds Michael Terrell, senior director for energy and climate at Google. “We partnered with Fervo in 2021 because we see significant potential for their geothermal technology to unlock a critical source of 24/7 carbon-free energy at scale, and we are thrilled to see Fervo reach this important technical milestone.”

In honor of the announcement, today — July 19 — is the inaugural Fervo Energy Technology Day.

Fervo’s unique horizontal drilling technology has made an unprecedented accomplishment with Project Red, which has also proven the reliability and capacity of geothermal energy to supply over 20 percent of country's power needs, the company explains in its news release.

“Power systems modeling confirms that geothermal can be a critical player in a fully decarbonized grid," says Jesse Jenkins, assistant professor and leader of the Zero-carbon Energy systems Research and Optimization lab at Princeton University, in the release. "Fervo’s successful commercial pilot takes next-generation geothermal technology from the realm of models into the real world and starts us on a path to unlock geothermal’s full potential.”

Fervo has started work on its first greenfield development in southwest Utah, which is adjacent to the U.S. Department of Energy's Frontier Observatory for Research in Geothermal Energy (FORGE).

Last year, Fervo raised $138 million to further develop its technology. The series C round was led by California-based investment firm DCVC, with participation from six new investors. In April, Fervo Energy secured the $10 million strategic investment from Devon Energy Corporation (NYSE: DVN). The deal created a partnership between the two entities.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Reliant, GM Energy team up on free renewable energy EV charging

plugging in

Reliant Energy and GM Energy are advancing a new renewable energy electricity plan that will “accelerate the clean energy journey for the two companies and their customers,” according to a news release.

Houston-based Reliant and GM Energy will be offering free nighttime charging for Chevrolet electric vehicle drivers that enroll in the new Reliant FreeCharge Nights.

The Reliant FreeCharge Nights plan will be available to existing and new Reliant electricity customers, and provides a monthly bill credit that offsets the energy charges incurred from charging the qualifying EV between 11 pm and 6 am. Customers must first designate one EV to receive the charging credit in their GM Energy Smart Charging Portal before signing up for the plan.

“As we continue to shape the future of EV charging and energy management for our customers, our work alongside Reliant in Texas is a sign of our commitment to working with industry leaders to facilitate more solutions that make EV adoption an easy decision,” Aseem Kapur, chief revenue officer, GM Energy, says in a news release. “The Reliant Free Charge Nights plan is a great example of how an automaker and an energy company can work together to build the ecosystem to support the all-electric future.”

Over 150 Chevrolet dealerships can now offer the plan to EV drivers upon vehicle purchase across Texas. The plan will be powered by 100 percent renewable energy through the purchase of renewable energy certificates (RECs) equal to the customer’s electricity usage.

“We’re excited to help Chevrolet EV drivers offset the cost of charging their vehicle all while having access to a renewable electricity plan,” Rasesh Patel, president, NRG Consumer, said in a news release.

25 years of innovation: Repsol exec on Houston's role in the energy transition

the view from heti

Houston hosted the inaugural Energy + Climate Startup Week in September, which brought together leading energy and climate venture capital investors, industry leaders and startups from around the world to showcase the most innovative companies and technologies that are transforming the energy industry while driving a sustainable, low-carbon energy future.

Repsol was one of the inaugural sponsors for the weeks kick off event that hosted several leading startups. This year marked 25 years of energy innovation for Repsol in the United States. As the energy landscape evolves, Repsol has committed to significant growth in renewable capacity, with an impressive 720 MW of solar and storage capacity already operational and 1.5 GW under construction.

Caton Fenz, CEO for Repsol’s Renewables North America shares more about Repsol’s approach to expanding its renewable footprint, integrating green energy into its core business and leveraging Houston’s unique role as a leader in the energy transition. Here’s an inside look at Repsol’s milestones and future goals in the journey toward decarbonization and a sustainable energy future.

Can you tell us more about Repsol’s strategy for expanding its renewables business?

This year Repsol is celebrating 25 years of energy development in the United States. Across the US, we have a team of more than 800 employees, with more than 130 employees working in the renewables business specifically.

Repsol’s growth ambition in the US renewable energy market is significant. Since launching our renewables activity in the US three years ago, we have installed more than 720 MW of solar generation and energy storage capacity. Today we have more than 1.5 GW of additional solar and energy storage capacity under construction, and more than 20 GW of solar, wind and energy storage in development across 13 states.

How does Repsol plan to integrate renewable energy sources into its broader business model?

Repsol Renewables operates in accordance with Repsol’s values and strategies. Renewable energy generation is one of the pillars of Repsol’s decarbonization strategy. Repsol will invest between €3 and 4 billion to organically develop its global project portfolio and aims to reach between 9,000 MW and 10,000 MW of installed capacity by 2027. Of this, 30% will be in the United States.

With these objectives in mind, we have been able to accelerate the development of wind, solar, and energy storage across the US market and the globe. By expanding our renewable energy business, we can further meet record demand growth for renewable energy.

What are the key projects or milestones that have been achieved within Repsol’s renewables portfolio so far?

Earlier this year, we announced the commercial operation of Frye Solar, our largest solar project worldwide. This project, located in Swisher County, Texas, has a total capacity of 637 MW. And as noted above, we have an additional 1.4 GW of projects under construction currently. These major energy infrastructure projects are indicative of the scale of our operations in the US.

Why does Repsol believe being located in Houston is critical for its business, particularly in the energy transition?

Repsol is proudly committed to Houston’s role in developing and delivering energy and value for the world. Houston is known as the Energy Capital of the World and over the next 10 years, we’ll see it be known as the Energy Transition Capital of the World. With Repsol’s Renewables North America business located in downtown Houston, we have access to talent and partnerships in a booming city filled with energy experts.

Why does Repsol see value in participating in Houston Energy + Climate Startup Week?

At Houston Energy + Climate Startup Week, Repsol Renewables is honored to support and learn from leaders and investors in the energy and climate industry. We believe it is important to continuously invest in talent, ideas, and collaboration across the energy value chain as we pursue our net zero by 2050 goal.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

University of Houston secures $3.6M from DOE program to fund sustainable fuel production

freshly granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”