Tim Latimer, CEO and co-founder of Fervo Energy, has been named to the TIME100 Next. Photo courtesy of Fervo Energy

What do pop star Sabrina Carpenter and Houston geothermal energy founder Tim Latimer have in common? In addition to their successful summers in their respective industries, they both also were named influential leaders on the TIME100 Next list for 2024.

For the fifth year, Time magazine released the annual list that was established to honor influential leaders "who are not waiting long in life to make an impact," reads the announcement article, continuing, "TIME100 Next has no age requirements; its aim is to recognize that influence does not have them either, nor does leadership look like it once did."

Representing Houston, Latimer was selected for his work in geothermal energy innovation. His company, Fervo Energy, has reached numerous milestones over its seven years of existence, garnering partnerships with the likes of Google and Devon Energy and raising an estimated $531 million in venture capital investment. Last month, the company announced it received a $100 million bridge loan from an affiliate of Irvington, New York-based X-Caliber Rural Capital for the first phase of its ongoing Cape Station project, which is being touted as the world’s largest geothermal energy plant.

"At a time when emission reductions are vital, energy demand has surged to a record high as a boom in AI and data centers pushes our nation’s grid to the brink," writes Tom Steyer, co–­executive chair of Galvanize Climate Solutions, which invests in Fervo Energy, in a Time article. "Leveraging multiple forms of renewable energy will be critical to meeting this demand and advancing the climate transition.

"One such solution is geothermal, which could eliminate close to 800 megatonnes of emissions annually by 2050," he continues. "Latimer uses fracking technology to supercharge the output of geothermal wells. Last year, in collaboration with Google, his startup piloted a first-of-its-kind commercial-­scale power plant, and in November, the Nevada plant (Project Red) began pumping electricity into Google data centers. Getting juice to the grid is a key milestone for energy startups—and one many never reach."

In an interview with InnovationMap for the Houston Innovators Podcast, Latimer reported that Fervo is growing and scaling at around a 100x pace. While Fervo's first project, Project Red, included three wells, Project Cape, a Southwest Utah site, will include around 100 wells with significantly reduced drilling cost and an estimated 2026 delivery. Latimer says there are a dozen other projects like Project Cape that are in the works.

"It's a huge ramp up in our drilling, construction, and powerplant programs from our pilot project, but we've already had tremendous success there," Latimer says of Project Cape. "We think our technology has a really bright future."

While Latimer looks ahead to the rapid growth of Fervo Energy, he says it's all due to the foundation he put in place for the company, which has a culture built on the motto, "Build things that last."

“You’re not going to get somewhere that really changes the world by cutting corners and taking short steps. And, if you want to move the needle on something as complicated as the global energy system that has been built up over hundreds of years with trillions of dollars of capital invested in it – you’re not going to do it overnight," he says on the show. "We’re all in this for the long haul together."


Through a first-of-its-kind proposal, Las Vegas-based public utility NV Energy would supply geothermal power generated by Fervo Energy for Google’s two data centers in Nevada. Screenshot via Google

Houston geothermal company grows relationship with Google to provide power to Nevada

powering up

Houston-based Fervo Energy’s geothermal energy soon will help power the world’s most popular website.

Through a first-of-its-kind proposal, Las Vegas-based public utility NV Energy would supply 115 megawatts of geothermal power generated by Fervo for Google’s two data centers in Nevada. Financial terms weren’t disclosed.

In 2021, Google teamed up with Fervo to develop a pilot project for geothermal power in Nevada. Two years later, electricity from this project started flowing into the Nevada grid serving the two Google data centers. Google spent $600 million to build each of the centers, which are in Henderson, a Las Vegas suburb, and Storey County, which is east of Reno.

The proposed agreement with NV Energy would bring about 25 times more geothermal power capacity to the Nevada grid, Google says, and enable more around-the-clock clean power for the search engine company’s Nevada data centers.

A data center gobbles up 10 to 50 times the energy per square foot of floor space that a typical office building does, according to the U.S. Department of Energy.

“NV Energy and Google’s partnership to develop new solutions to bring clean … energy technology — like enhanced geothermal — onto Nevada’s grid at this scale is remarkable. This innovative proposal will not be paid for by NV Energy’s other customers but will help ensure all our customers benefit from cleaner, greener energy resources,” Doug Cannon, president and CEO of NV Energy, says in a Google blog post.

Utility regulators still must sign off on the proposal.

“If approved, it provides a blueprint for other utilities and large customers in Nevada to accelerate clean energy goals,” Cannon says.

Houston-based Fervo Energy shared the results of its commercial pilot project with Google. Photo via Getty Images

Houston geothermal energy company announces major milestone

the results are in

A Houston energy startup has announced the news that every early-stage company wants to get to shout from the rooftops: the technology works.

Fervo Energy announced this week that its commercial pilot project has resulted in continuous carbon-free geothermal energy production. The full-scale commercial pilot, Project Red, is in northern Nevada and made possible through a 2021 partnership with Google.

“By applying drilling technology from the oil and gas industry, we have proven that we can produce 24/7 carbon-free energy resources in new geographies across the world," Tim Latimer, Fervo Energy CEO and co-founder, says in a news release. "The incredible results we share today are the product of many years of dedicated work and commitment from Fervo employees and industry partners, especially Google."

The goal of the partnership is to power Google’s Cloud region in Las Vegas with Fervo's geothermal-generated power.

“Achieving our goal of operating on 24/7 carbon-free energy will require new sources of firm, clean power to complement variable renewables like wind and solar,” adds Michael Terrell, senior director for energy and climate at Google. “We partnered with Fervo in 2021 because we see significant potential for their geothermal technology to unlock a critical source of 24/7 carbon-free energy at scale, and we are thrilled to see Fervo reach this important technical milestone.”

In honor of the announcement, today — July 19 — is the inaugural Fervo Energy Technology Day.

Fervo’s unique horizontal drilling technology has made an unprecedented accomplishment with Project Red, which has also proven the reliability and capacity of geothermal energy to supply over 20 percent of country's power needs, the company explains in its news release.

“Power systems modeling confirms that geothermal can be a critical player in a fully decarbonized grid," says Jesse Jenkins, assistant professor and leader of the Zero-carbon Energy systems Research and Optimization lab at Princeton University, in the release. "Fervo’s successful commercial pilot takes next-generation geothermal technology from the realm of models into the real world and starts us on a path to unlock geothermal’s full potential.”

Fervo has started work on its first greenfield development in southwest Utah, which is adjacent to the U.S. Department of Energy's Frontier Observatory for Research in Geothermal Energy (FORGE).

Last year, Fervo raised $138 million to further develop its technology. The series C round was led by California-based investment firm DCVC, with participation from six new investors. In April, Fervo Energy secured the $10 million strategic investment from Devon Energy Corporation (NYSE: DVN). The deal created a partnership between the two entities.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Wind and solar supplied over a third of ERCOT power, report shows

power report

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”