Recently, two HETI members announced acquisition and investment into carbon capture businesses. Photo via htxenergytransition.org

CCUS will play a pivotal role in the global energy transition by decarbonizing carbon-intensive industries, including energy, chemicals, cement, and steel. CCUS is one of the few proven technologies to significantly lower net emissions. However, the unique nature of decarbonization presents many complex challenges. With greater funding and growing policy support, the widespread adoption of CCUS technologies is becoming more technically feasible and economically viable than ever before.

Houston, with its existing CCUS infrastructure, large concentration of CCUS expertise, and high storage capacity, is the ideal location to deploy and derisk CCUS projects at unprecedented speed and scale. Recently, two HETI members announced acquisition and investment into carbon capture businesses.

SLB + Aker Carbon Capture (ACC)

SLB, a pioneer in carbon capture technologies, announced an agreement to acquire major ownership in Aker Carbon Capture (ACC), a pure-play carbon capture company. The move combines SLB’s established CCUS business with ACC’s innovative CCUS technology to support accelerated industrial decarbonization at scale.

“For CCUS to have the expected impact on supporting global net-zero ambitions, it will need to scale up 100-200 times in less than three decades,” said Olivier Le Peuch, chief executive officer, SLB. “Crucial to this scale-up is the ability to lower capture costs, which often represent as much as 50-70% of the total spend of a CCUS project. We are excited to create this business with ACC to accelerate the deployment of carbon capture technologies that will shift the economics of carbon capture across high-emitting industrial sectors.”

Chevron New Energies + ION Clean Energy

Chevron New Energies, a division of Chevron U.S.A. Inc., announced a lead investment in ION Clean Energy (ION), which provides post-combustion point-source capture technology through its third-generation ICE-31 liquid amine system. This investment expands and complements Chevron’s growing portfolio of CCUS technologies.

“ION’s solvent technology, combined with Chevron’s assets and capabilities, has the potential to reach numerous emitters and support our ambitions of a lower carbon future,” said Chris Powers, vice president of CCUS & Emerging, Chevron New Energies. “We believe collaborations like this are essential to our efforts to grow carbon capture on a global scale.”

“This investment from Chevron is a huge testament to the hard work of our team and the potential of our technology,” said ION founder and executive chairman Buz Brown. “We appreciate their collaboration and with their investment we expect to accelerate commercial deployment of our technology so that we can realize the kind of wide-ranging commercial and environmental impact we’ve long envisioned.”

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

This expert acknowledges the energy transition is not happening overnight — but it's never too early for Texans looking to get in on the ground floor. Photo via Shutterstock

Expert shares 5 key factors for evolving the energy transition in Texas

GUEST COLUMN

Humanity faces an inflection point in the coming decade. In order for the world’s population to survive and, ultimately, prosper, especially the population of developing countries such as India, China, and Brazil, significant investment in all forms of energy will be needed. Texas-based energy companies will play a crucial role in developing, advancing and supplying environmentally sensitive forms of energy to meet the world’s insatiable demand.

According to the U.S. Energy Information Administration, global energy consumption is expected to increase by a staggering 50 percent in the next 25 years. Fueled by rapid economic and population growth, this spike in demand is particularly focused within developing Asian countries outside of the Organization for Economic Cooperation and Development (OECD). Taking steps toward energy evolution today is crucial not only for economic progress but also to address the long-term impact of climate change. Research compiled by JLL highlights five key factors to consider.

1. Embracing a gradual evolution

Historically, energy transitions require significant time to be fully realized, often spanning over 50 years. Coal took more than 60 years to grow from a mere 5 percent to a dominant 50 percent share of the world's primary energy supply. Similarly, natural gas took nearly 70 years to increase its market share from 1 percent to 20 percent in the United States. Widespread commercialization of nuclear energy spans as much as 80 years, from the point of initial discovery and application. Major pendulum swings do not occur overnight; the next energy evolution will require adaptability and resilience.

2. Increase in global energy consumption

As non-OECD countries experience periods of economic growth, particularly driven by a growth of the manufacturing sector, these countries’ energy consumption naturally follows suit. Approximately 2.5 billion people live in these regions, which today heavily rely on non-renewable sources to meet basic energy needs.

As OECD countries continue to introduce sustainable technologies like battery power and other alternatives at scale, a transfer of more efficient and eco-friendly sources and technologies to developing communities must occur to reduce the world’s overall carbon footprint.

3. Surging investment in global energy transition

Investments in the global energy transition surpassed $1 trillion in 2022 – a stunning year-over-year increase of 31 percent. These investments are propelling innovative, sustainable solutions and driving the research and development necessary for a more environmentally conscious energy landscape.

4. Diversification and revised renewables forecast

Countries are actively diversifying their energy generation away from natural gas, specifically as a response to the energy crisis sparked by Russia's invasion of Ukraine. This push towards sustainable alternatives has received further validation with the International Energy Agency (IEA) recently revising its five-year renewables forecast, emphasizing a significant 28.4 percent increase. This revision serves as a testament to the increasing significance of sustainable energy sources in ensuring a resilient energy future.

5. United States energy production

Even with the implementation of the Inflation Reduction Act of 2022 (IRA), the United States will maintain its production and export of oil, natural gas, and derivatives. While recognizing the continued role of these traditional energy sources in meeting global energy demands, the United States also acknowledges the imperative of transitioning towards sustainable energy sources. Encouraging companies to embrace alternative energy solutions in line with this transition is now big business, as significant incentives are being provided at federal and state levels.

And what about here in Texas?

In this critical era of global energy evolution, Texas has the opportunity to take center stage, holding the keys not only to its own future but also to those far beyond the state’s borders. With abundant wind power production, vast solar energy potential, a favorable regulatory environment, and attractive tax incentives, Texas is well positioned to be a leader in innovation, research, and production of alternative energy sources. Combined with the presence of many of the country’s leading energy companies, Texas must be a powerhouse for driving a sustainable energy transition on a large scale.

Transforming the global energy landscape will not be accomplished overnight. It requires the collective efforts of governments, industries, companies, and individuals working together towards a common goal. Texas and Texans can serve as a beacon of inspiration, leading the charge in alternative energy adoption and investing today in the next century of energy production and consumption. Ultimately, our example should be one the world can follow.

------

Louis Rosenthal is executive managing director at JLL and the global leader of the company's energy and renewables practice group.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Reliant, GM Energy team up on free renewable energy EV charging

plugging in

Reliant Energy and GM Energy are advancing a new renewable energy electricity plan that will “accelerate the clean energy journey for the two companies and their customers,” according to a news release.

Houston-based Reliant and GM Energy will be offering free nighttime charging for Chevrolet electric vehicle drivers that enroll in the new Reliant FreeCharge Nights.

The Reliant FreeCharge Nights plan will be available to existing and new Reliant electricity customers, and provides a monthly bill credit that offsets the energy charges incurred from charging the qualifying EV between 11 pm and 6 am. Customers must first designate one EV to receive the charging credit in their GM Energy Smart Charging Portal before signing up for the plan.

“As we continue to shape the future of EV charging and energy management for our customers, our work alongside Reliant in Texas is a sign of our commitment to working with industry leaders to facilitate more solutions that make EV adoption an easy decision,” Aseem Kapur, chief revenue officer, GM Energy, says in a news release. “The Reliant Free Charge Nights plan is a great example of how an automaker and an energy company can work together to build the ecosystem to support the all-electric future.”

Over 150 Chevrolet dealerships can now offer the plan to EV drivers upon vehicle purchase across Texas. The plan will be powered by 100 percent renewable energy through the purchase of renewable energy certificates (RECs) equal to the customer’s electricity usage.

“We’re excited to help Chevrolet EV drivers offset the cost of charging their vehicle all while having access to a renewable electricity plan,” Rasesh Patel, president, NRG Consumer, said in a news release.

25 years of innovation: Repsol exec on Houston's role in the energy transition

the view from heti

Houston hosted the inaugural Energy + Climate Startup Week in September, which brought together leading energy and climate venture capital investors, industry leaders and startups from around the world to showcase the most innovative companies and technologies that are transforming the energy industry while driving a sustainable, low-carbon energy future.

Repsol was one of the inaugural sponsors for the weeks kick off event that hosted several leading startups. This year marked 25 years of energy innovation for Repsol in the United States. As the energy landscape evolves, Repsol has committed to significant growth in renewable capacity, with an impressive 720 MW of solar and storage capacity already operational and 1.5 GW under construction.

Caton Fenz, CEO for Repsol’s Renewables North America shares more about Repsol’s approach to expanding its renewable footprint, integrating green energy into its core business and leveraging Houston’s unique role as a leader in the energy transition. Here’s an inside look at Repsol’s milestones and future goals in the journey toward decarbonization and a sustainable energy future.

Can you tell us more about Repsol’s strategy for expanding its renewables business?

This year Repsol is celebrating 25 years of energy development in the United States. Across the US, we have a team of more than 800 employees, with more than 130 employees working in the renewables business specifically.

Repsol’s growth ambition in the US renewable energy market is significant. Since launching our renewables activity in the US three years ago, we have installed more than 720 MW of solar generation and energy storage capacity. Today we have more than 1.5 GW of additional solar and energy storage capacity under construction, and more than 20 GW of solar, wind and energy storage in development across 13 states.

How does Repsol plan to integrate renewable energy sources into its broader business model?

Repsol Renewables operates in accordance with Repsol’s values and strategies. Renewable energy generation is one of the pillars of Repsol’s decarbonization strategy. Repsol will invest between €3 and 4 billion to organically develop its global project portfolio and aims to reach between 9,000 MW and 10,000 MW of installed capacity by 2027. Of this, 30% will be in the United States.

With these objectives in mind, we have been able to accelerate the development of wind, solar, and energy storage across the US market and the globe. By expanding our renewable energy business, we can further meet record demand growth for renewable energy.

What are the key projects or milestones that have been achieved within Repsol’s renewables portfolio so far?

Earlier this year, we announced the commercial operation of Frye Solar, our largest solar project worldwide. This project, located in Swisher County, Texas, has a total capacity of 637 MW. And as noted above, we have an additional 1.4 GW of projects under construction currently. These major energy infrastructure projects are indicative of the scale of our operations in the US.

Why does Repsol believe being located in Houston is critical for its business, particularly in the energy transition?

Repsol is proudly committed to Houston’s role in developing and delivering energy and value for the world. Houston is known as the Energy Capital of the World and over the next 10 years, we’ll see it be known as the Energy Transition Capital of the World. With Repsol’s Renewables North America business located in downtown Houston, we have access to talent and partnerships in a booming city filled with energy experts.

Why does Repsol see value in participating in Houston Energy + Climate Startup Week?

At Houston Energy + Climate Startup Week, Repsol Renewables is honored to support and learn from leaders and investors in the energy and climate industry. We believe it is important to continuously invest in talent, ideas, and collaboration across the energy value chain as we pursue our net zero by 2050 goal.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

University of Houston secures $3.6M from DOE program to fund sustainable fuel production

freshly granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”