Fervo Energy says its drilling operations Utah’s Cape Station show a 70 percent reduction in drilling times, paving the way for advancement of its geothermal energy system. Photo via fervoenergy.com

Early drilling results indicate a geothermal energy project operated in Utah by Houston-based startup Fervo Energy is performing better than expected.

Fervo says its drilling operations Utah’s Cape Station show a 70 percent reduction in drilling times, paving the way for advancement of its geothermal energy system. Fervo began construction last year on Cape Station, which is set to deliver clean power to the grid in 2026 and be fully operating by 2028.

The company recently published early drilling results from Cape Station that it says exceed the U.S. Department of Energy’s expectations for enhanced geothermal systems. Fervo says these results “substantiate the rapid learning underway in the geothermal industry and signal readiness for continued commercialization.”

Founded in 2017, Fervo provides carbon-free energy through development of next-generation geothermal power.

Fervo began drilling at Cape Station, a 400-megawatt project in southwest Utah, in June 2023. Over the past six months, the company has drilled one vertical well and six horizontal wells there. The company reports that costs for the first four horizontal wells at Cape Station fell from $9.4 million to $4.8 million per well.

“Since its inception, Fervo has looked to bring a manufacturing mentality to enhanced geothermal development, building a highly repeatable drilling process that allows for continuous improvement and, as a result, lower costs,” Tim Latimer, Fervo’s co-founder and CEO, says in a news release. “In just six months, we have proven that our technology solutions have led to a dramatic acceleration in forecasted drilling performance.”

Trey Lowe, chief technology officer of Oklahoma City-based oil and gas producer Devon Energy, likens Fervo’s drilling results to “the early days of the shale revolution.” Last year, Devon invested $10 million in Fervo.

“When you operate continually and understand the resource, you dramatically streamline operations. That’s the unique value of Fervo’s approach to enhanced geothermal,” says Lowe.

Last summer, Fervo reported the results of another one of its projects, Project Red, which is in northern Nevada and made possible through a 2021 partnership with Google. That site officially went online for the tech company in December.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

25 years of innovation: Repsol exec on Houston's role in the energy transition

the view from heti

Houston hosted the inaugural Energy + Climate Startup Week in September, which brought together leading energy and climate venture capital investors, industry leaders and startups from around the world to showcase the most innovative companies and technologies that are transforming the energy industry while driving a sustainable, low-carbon energy future.

Repsol was one of the inaugural sponsors for the weeks kick off event that hosted several leading startups. This year marked 25 years of energy innovation for Repsol in the United States. As the energy landscape evolves, Repsol has committed to significant growth in renewable capacity, with an impressive 720 MW of solar and storage capacity already operational and 1.5 GW under construction.

Caton Fenz, CEO for Repsol’s Renewables North America shares more about Repsol’s approach to expanding its renewable footprint, integrating green energy into its core business and leveraging Houston’s unique role as a leader in the energy transition. Here’s an inside look at Repsol’s milestones and future goals in the journey toward decarbonization and a sustainable energy future.

Can you tell us more about Repsol’s strategy for expanding its renewables business?

This year Repsol is celebrating 25 years of energy development in the United States. Across the US, we have a team of more than 800 employees, with more than 130 employees working in the renewables business specifically.

Repsol’s growth ambition in the US renewable energy market is significant. Since launching our renewables activity in the US three years ago, we have installed more than 720 MW of solar generation and energy storage capacity. Today we have more than 1.5 GW of additional solar and energy storage capacity under construction, and more than 20 GW of solar, wind and energy storage in development across 13 states.

How does Repsol plan to integrate renewable energy sources into its broader business model?

Repsol Renewables operates in accordance with Repsol’s values and strategies. Renewable energy generation is one of the pillars of Repsol’s decarbonization strategy. Repsol will invest between €3 and 4 billion to organically develop its global project portfolio and aims to reach between 9,000 MW and 10,000 MW of installed capacity by 2027. Of this, 30% will be in the United States.

With these objectives in mind, we have been able to accelerate the development of wind, solar, and energy storage across the US market and the globe. By expanding our renewable energy business, we can further meet record demand growth for renewable energy.

What are the key projects or milestones that have been achieved within Repsol’s renewables portfolio so far?

Earlier this year, we announced the commercial operation of Frye Solar, our largest solar project worldwide. This project, located in Swisher County, Texas, has a total capacity of 637 MW. And as noted above, we have an additional 1.4 GW of projects under construction currently. These major energy infrastructure projects are indicative of the scale of our operations in the US.

Why does Repsol believe being located in Houston is critical for its business, particularly in the energy transition?

Repsol is proudly committed to Houston’s role in developing and delivering energy and value for the world. Houston is known as the Energy Capital of the World and over the next 10 years, we’ll see it be known as the Energy Transition Capital of the World. With Repsol’s Renewables North America business located in downtown Houston, we have access to talent and partnerships in a booming city filled with energy experts.

Why does Repsol see value in participating in Houston Energy + Climate Startup Week?

At Houston Energy + Climate Startup Week, Repsol Renewables is honored to support and learn from leaders and investors in the energy and climate industry. We believe it is important to continuously invest in talent, ideas, and collaboration across the energy value chain as we pursue our net zero by 2050 goal.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

University of Houston secures $3.6M from DOE program to fund sustainable fuel production

freshly granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

Global industrial company Daikin makes deal with Houston Astros on stadium rename

big deal

The Houston Astros' home will get a new name on Jan. 1, becoming Daikin Park under an agreement through the 2039 season the team announced Monday.

The stadium opened as Enron Field in 2000 as part of a 30-year, $100 million agreement but the name was removed in March 2002 following Enron Corp.'s bankruptcy filing and the ballpark briefly became Astros Field.

It was renamed Minute Maid Park in June 2002 as part of a deal with The Minute Maid Co., a Houston-based subsidiary of The Coca-Cola Co. Then-Astros owner Drayton McLane said at the time the agreement was for 28 years and for more than $100 million.

The new deal is with Daikin Comfort Technologies North America Inc., a subsidiary of Daikin Industries Ltd., which is based in Japan and is a leading air conditioning company.

Minute Maid will remain an Astros partner through 2029, the team said.

In August, Daikin, which has its 4.2 million-square-foot Daikin Texas Technology Park in Waller, Texas, partnered with the city of Houston to provide advanced air conditioning and heating solutions to help homeowners with energy efficiency and general comfort. The company pledged install up to 30 horizontal discharge inverter FIT heat pump units over the next three years.