Houston-based Collide plans to use its seed funding to accelerate the development of its GenAI platform for the energy industry. Photo via Getty Images.

Houston-based Collide, a provider of generative artificial intelligence for the energy sector, has raised $5 million in seed funding led by Houston’s Mercury Fund.

Other investors in the seed round include Bryan Sheffield, founder of Austin-based Parsley Energy, which was acquired by Dallas-based Pioneer Natural Resources in 2021; Billy Quinn, founder and managing partner of Dallas-based private equity firm Pearl Energy Investments; and David Albin, co-founder and former managing partner of Dallas-based private equity firm NGP Capital Partners.

“(Collide) co-founders Collin McLelland and Chuck Yates bring a unique understanding of the oil and gas industry,” Blair Garrou, managing partner at Mercury, said in a news release. “Their backgrounds, combined with Collide’s proprietary knowledge base, create a significant and strategic moat for the platform.”

Collide, founded in 2022, says the funding will enable the company to accelerate the development of its GenAI platform. GenAI creates digital content such as images, videos, text, and music.

Originally launched by Houston media organization Digital Wildcatters as “a professional network and digital community for technical discussions and knowledge sharing,” the company says it will now shift its focus to rolling out its enterprise-level, AI-enabled solution.

Collide explains that its platform gathers and synthesizes data from trusted sources to deliver industry insights for oil and gas professionals. Unlike platforms such as OpenAI, Perplexity, and Microsoft Copilot, Collide’s platform “uniquely accesses a comprehensive, industry-specific knowledge base, including technical papers, internal processes, and a curated Q&A database tailored to energy professionals,” the company said.

Collide says its approximately 6,000 platform users span 122 countries.

A new joint venture will work on four projects supplying 5 gigawatts of power from combined-cycle power plants for the ERCOT and PJM Interconnection grids. Photo via Getty Images.

NRG Energy forms joint venture to build power plants for ERCOT and AI-driven demand

teaming up

Houston-based power provider NRG Energy Inc. has formed a joint venture with two other companies to meet escalating demand for electricity to fuel the rise of data centers and the evolution of generative AI.

NRG’s partners in the joint venture are GE Vernova, a provider of renewable energy equipment and services, and TIC – The Industrial Co., a subsidiary of construction and engineering company Kiewit.

“The growing demand for electricity in part due to GenAI and the buildup of data centers means we need to form new, innovative partnerships to quickly increase America’s dispatchable generation,” Robert Gaudette, head of NRG Business and Wholesale Operations, said in a news release. “Working together, these three industry leaders are committed to executing with speed and excellence to meet our customers’ generation needs.”

Initially, the joint venture will work on four projects supplying 5 gigawatts of power from combined-cycle power plants, which uses a combination of natural gas and steam turbines that produce additional electricity from natural gas waste. Electricity from these projects will be produced for power grids operated by the Electric Reliability Council of Texas (ERCOT) and PJM Interconnection. The projects are scheduled to come online from 2029 through 2032.

The joint venture says the model it’s developing for these four projects is “replicable and scalable,” with the potential for expansion across the U.S.

The company is also developing a new 721-megawatt natural gas combined-cycle unit at its Cedar Bayou plant in Baytown, Texas. Read more here.

The NOV Supernova Accelerator will work to cultivate relationships between startups and NOV. Photo via Getty Images

NOV's Houston accelerator names inaugural cohort to propel digital transformation in energy

building tech

Houston-based Venture Builder VC has kicked off its NOV Supernova Accelerator and named its inaugural cohort.

The program, originally announced earlier this year, focuses on accelerating digital transformation solutions for NOV Inc.'s operations in the upstream oil and gas industry. It will support high-potential startups in driving digital transformation within the energy sector, specifically upstream oil and gas, and last five months and culminate in a demo day where founders will present solutions to industry leaders, potential investors, NOV executives, and other stakeholders.

The NOV Supernova Accelerator will work to cultivate relationships between startups and NOV. They will offer specific companies access to NOV’s corporate R&D teams and business units to test their solutions in an effort to potentially develop long-term partnerships.

“The Supernova Accelerator is a reflection of our commitment to fostering forward-thinking technologies that will drive the future of oil and gas,” Diana Grauer, director of R&D of NOV, says in a news release.

The cohort’s focus will be digital transformation challenges that combine with NOV’s vision and include data management and analytics, operational efficiency, HSE (Health, Safety, and Environmental) monitoring, predictive maintenance, and digital twins.

Startups selected for the program include:

  • AnyLog, an edge data management platform that replaces proprietary edge projects with a plug-and-play solution that services real-time data directly at the source, eliminating cloud costs, data transfer, and latency issues.
  • Equipt, an AI-powered self-serve platform that maximizes Asset & Field Service performance, and minimizes downtime and profit leakages.
  • Geolumina's platform is a solution that leverages data analytics to enhance skills, scale insights, and improve efficiency for subsurface companies.
  • Gophr acts as the "Priceline" of logistics, using AI to provide instant shipping quotes and optimize dispatch for anything from paper clips to rocket ships.
  • IoT++ simplifies industrial IoT with a secure, AI-enabled ecosystem of plug-and-play edge devices.
  • Kiana's hardware-agnostic solution secures people, assets, and locations using existing Wi-Fi, Bluetooth, UWB, and cameras, helping energy and manufacturing companies reduce risks and enhance operations.
  • Novity uses AI and physics models to accurately predict machine faults, helping factory operators minimize downtime by knowing the remaining useful life of their machines.
  • Promecav is redefining crude oil conditioning with patented technology that slashes water use and energy while reducing toxic exposure for safer, cleaner, and more sustainable oil processing.
  • RaftMind's enterprise AI solution transforms how businesses manage knowledge. Our advanced platform makes it easier to process data and unlock insights from diverse sources.
  • Spindletop AI uses edge-based machine learning to make each well an autonomous, self-optimizing unit, cutting costs, emissions, and cloud dependence.
  • Taikun.ai combines generative AI with SCADA data to create virtual industrial engineers, augmenting human teams for pennies an hour.
  • Telemetry Insight’s platform utilizes high-resolution accelerometer data to simplify oilfield monitoring and optimize marginal wells for U.S. oil and gas producers via actionable insights.
  • Visual Logging utilizes fiber optic and computer vision technology to deliver real-time monitoring solutions, significantly enhancing data accuracy by providing precise insights into well casing integrity and flow conditions.

“Each startup brings unique solutions to the table, and we are eager to see how these technologies will evolve with NOV’s support and expertise,” Billy Grandy, general partner of Venture Builder VC, says in the release. “This partnership reflects our ongoing commitment to nurturing talent and driving innovation within the energy sector.”

Venture Builder VC is a consulting firm, investor, and accelerator program.

“Unlike mergers and acquisitions, the venture client model allows corporations like NOV to quickly test and implement new technologies without committing to an acquisition or risking significant investment,” Grandy previously said about the accelerator program.

Accenture's Houston hub will introduce a new generative AI studio. Photo via Getty Images

Global corporation to open generative AI studio geared toward energy, chemicals industries in Houston

coming soon

Accenture has announced a new studio coming to Houston that will help its industrial clients with generative artificial intelligence.

The company announced that it will launch a network of studios across North America that will work with clients to explore generative AI applications in business. The initiative will support companies in navigating use cases, conducting AI pilots, and scaling programs. The studios will be in Accenture Innovation Hubs in Chicago, Houston, New York, San Francisco, Toronto and Washington, D.C.

“The studios are designed to help our clients move from interest to action to value, in a responsible way with clear business cases,” Manish Sharma, North America CEO of Accenture, says in the news release. “We are constantly refreshing our learnings from more than 3,000 client conversations on generative AI this year. We use these conversations as demand signals to understand the real-world challenges our clients face and invest in the areas of greatest need and opportunity.”

Each of the studios will have a specific industrial focus as well as broad support. Houston's location will specialize in Industry X, chemicals, energy and utilities industries. The other five markets, according to Accenture, are as follows:

  • Chicago will specialize in financial services, health, life sciences, consumer goods and services, Industry X and manufacturing.
  • New York will specialize in life sciences and financial services.
  • San Francisco will specialize in software and platforms and communications, media, and technology.
  • Toronto will specialize in financial services, retail, health, and public service.
  • Washington, D.C. will specialize in health, public service, including federal government services.

The initiative is a part of Accenture’s $3 billion investment in data and AI, and each of the studios will leverage Accenture’s top data and AI experts and partners, including expertise from within Accenture's Center for Advanced AI. Resource access also includes more than 1,450 patents and patent applications in AI solutions, as well as learnings from more than 300 active generative AI projects the company has worked on.

“Clients are ready to move beyond generative AI experimentation. They want to harness generative AI at scale to fundamentally reinvent their business,” Sharma adds. “Clients will come to the studios to access the latest innovations, experiment with new technologies, tools, and approaches to advance their skills, and develop roadmaps to adopt generative AI at scale.”

As the world becomes more reliant on renewable energy, artificial intelligence is proving to be a major game-changer. Photo via Getty Images

How AI technology is advancing a low-carbon future

the view from heti

In the midst of a continuously changing global energy landscape, industry experts, leading energy companies and corporations have rallied together for one common goal: to reach net zero by 2050. As the demand for energy increases, so does the urgency to develop more energy efficient technologies that reduce emissions.

As the world becomes more reliant on renewable energy, artificial intelligence is proving to be a major game-changer. AI is one of the world’s largest disruptors in tech to date with some tech giants pouring millions into research surrounding AI technologies.

While artificial intelligence may not be the first thing to come to mind when talking about the energy industry, it’s already proven its value in fueling the energy transition in multiple domains: improving renewable energy forecasting, grid operations, materials innovation and more. Companies like Accenture have shown how artificial intelligence can play a huge role in steering the energy transition toward a more efficient future.

As a technology services provider, Accenture bridges the gap between technology and human ingenuity to solve some of the world’s most complex issues. With more than 15 years of leadership in metaverse-related technology and more than 1,400 patents, the Accenture Metaverse team brings together metaverse-skilled professionals and market-leading capabilities across Accenture.

The Dublin, Ireland-based company recently announced plans to invest more than $3 billion in artificial intelligence and double its AI-related staff to accommodate demands. Accenture also plans to use generative AI for client work and launch an AI Navigator for Enterprise platform to help guide AI strategy, use cases, decision-making and policy.

With decades of investments and patents, Accenture is no stranger to AI. The company also recently introduced their Net Zero Metaverse, an immersive experience that allows users to explore the future of energy, at the third annual Future of Global Energy conference hosted by the Greater Houston Partnership and the Houston Energy Transition Initiative presented by Chevron. The innovative software system consists of multiple digital worlds including a Charge Stations of the Future, Energy Transition Igloo, a Space Lab and Hydrogen Heights, a renewable-powered neighborhood named after The Heights of Houston.

While Accenture is helping to shift to a more sustainable future, three ways that AI software has already transformed the way we generate, distribute and consume energy are through smart grids, optimized electricity consumption and electricity mobility.

Smart Grids
AI technology can help optimize the efficiency of smart grids, reducing the number of outages and mitigating impact for both residential and commercial customers. In its ability to analyze data collected by smart grids, AI can predict the demand of energy and adjust the flow of electricity accordingly.

Optimized electricity consumption
According to the World Economic Forum, reducing carbon emissions in buildings will be critical to achieving net zero emissions by 2050; buildings represent 39% of global greenhouse gas emissions. AI powered smart buildings and homes can help to reduce energy consumption and operating costs. With the ability to analyze data from sensors and other sources, AI software can identify patterns, predict equipment failures and maintenance needs and help building managers schedule maintenance repairs more efficiently.

Electricity mobility
According to the Congressional Budget Office, transportation is the largest source of greenhouse gas emissions in the United States with CO2 emissions representing about 97% of the global warming potential of all greenhouse emissions. AI software plays a key role in monitoring driving conditions, speed and load levels predicting the most efficient way to use available energy. AI software also helps in safety management and aids in the race to a pollution-free eco-friendly environment.

While AI technology is still advancing, and there is uncertainty in its accuracy, this breakthrough technology is shaping the future of society offering new approaches to optimize energy systems’ operation and reliability.

Learn more about what companies like Accenture are doing with AI technologies.

------------

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice research team's study keeps CO2-to-fuel devices running 50 times longer

new findings

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.

The case for smarter CUI inspections in the energy sector

Guest Column

Corrosion under insulation (CUI) accounts for roughly 60% of pipeline leaks in the U.S. oil and gas sector. Yet many operators still rely on outdated inspection methods that are slow, risky, and economically unsustainable.

This year, widespread budget cuts and layoffs across the sector are forcing refineries to do more with less. Efficiency is no longer a goal; it’s a mandate. The challenge: how to maintain safety and reliability without overextending resources?

Fortunately, a new generation of technologies is gaining traction in the oil and gas industry, offering operators faster, safer, and more cost-effective ways to identify and mitigate CUI.

Hidden cost of corrosion

Corrosion is a pervasive threat, with CUI posing the greatest risk to refinery operations. Insulation conceals damage until it becomes severe, making detection difficult and ultimately leading to failure. NACE International estimates the annual cost of corrosion in the U.S. at $276 billion.

Compounding the issue is aging infrastructure: roughly half of the nation’s 2.6 million miles of pipeline are over 50 years old. Aging infrastructure increases the urgency and the cost of inspections.

So, the question is: Are we at a breaking point or an inflection point? The answer depends largely on how quickly the industry can move beyond inspection methods that no longer match today's operational or economic realities.

Legacy methods such as insulation stripping, scaffolding, and manual NDT are slow, hazardous, and offer incomplete coverage. With maintenance budgets tightening, these methods are no longer viable.

Why traditional inspection falls short

Without question, what worked 50 years ago no longer works today. Traditional inspection methods are slow, siloed, and dangerously incomplete.

Insulation removal:

  • Disruptive and expensive.
  • Labor-intensive and time-consuming, with a high risk of process upsets and insulation damage.
  • Limited coverage. Often targets a small percentage of piping, leaving large areas unchecked.
  • Health risks: Exposes workers to hazardous materials such as asbestos or fiberglass.

Rope access and scaffolding:

  • Safety hazards. Falls from height remain a leading cause of injury.
  • Restricted time and access. Weather, fatigue, and complex layouts limit coverage and effectiveness.
  • High coordination costs. Multiple contractors, complex scheduling, and oversight, which require continuous monitoring, documentation, and compliance assurance across vendors and protocols drive up costs.

Spot checks:

  • Low detection probability. Random sampling often fails to detect localized corrosion.
  • Data gaps. Paper records and inconsistent methods hinder lifecycle asset planning.
  • Reactive, not proactive: Problems are often discovered late after damage has already occurred.

A smarter way forward

While traditional NDT methods for CUI like Pulsed Eddy Current (PEC) and Real-Time Radiography (RTR) remain valuable, the addition of robotic systems, sensors, and AI are transforming CUI inspection.

Robotic systems, sensors, and AI are reshaping how CUI inspections are conducted, reducing reliance on manual labor and enabling broader, data-rich asset visibility for better planning and decision-making.

ARIX Technologies, for example, introduced pipe-climbing robotic systems capable of full-coverage inspections of insulated pipes without the need for insulation removal. Venus, ARIX’s pipe-climbing robot, delivers full 360° CUI data across both vertical and horizontal pipe circuits — without magnets, scaffolding, or insulation removal. It captures high-resolution visuals and Pulsed Eddy Current (PEC) data simultaneously, allowing operators to review inspection video and analyze corrosion insights in one integrated workflow. This streamlines data collection, speeds up analysis, and keeps personnel out of hazardous zones — making inspections faster, safer, and far more actionable.

These integrated technology platforms are driving measurable gains:

  • Autonomous grid scanning: Delivers structured, repeatable coverage across pipe surfaces for greater inspection consistency.
  • Integrated inspection portal: Combines PEC, RTR, and video into a unified 3D visualization, streamlining analysis across inspection teams.
  • Actionable insights: Enables more confident planning and risk forecasting through digital, shareable data—not siloed or static.

Real-world results

Petromax Refining adopted ARIX’s robotic inspection systems to modernize its CUI inspections, and its results were substantial and measurable:

  • Inspection time dropped from nine months to 39 days.
  • Costs were cut by 63% compared to traditional methods.
  • Scaffolding was minimized 99%, reducing hazardous risks and labor demands.
  • Data accuracy improved, supporting more innovative maintenance planning.

Why the time is now

Energy operators face mounting pressure from all sides: aging infrastructure, constrained budgets, rising safety risks, and growing ESG expectations.

In the U.S., downstream operators are increasingly piloting drone and crawler solutions to automate inspection rounds in refineries, tank farms, and pipelines. Over 92% of oil and gas companies report that they are investing in AI or robotic technologies or have plans to invest soon to modernize operations.

The tools are here. The data is here. Smarter inspection is no longer aspirational — it’s operational. The case has been made. Petromax and others are showing what’s possible. Smarter inspection is no longer a leap but a step forward.

---

Tyler Flanagan is director of service & operations at Houston-based ARIX Technologies.


Scientists warn greenhouse gas accumulation is accelerating and more extreme weather will come

Climate Report

Humans are on track to release so much greenhouse gas in less than three years that a key threshold for limiting global warming will be nearly unavoidable, according to a study released June 19.

The report predicts that society will have emitted enough carbon dioxide by early 2028 that crossing an important long-term temperature boundary will be more likely than not. The scientists calculate that by that point there will be enough of the heat-trapping gas in the atmosphere to create a 50-50 chance or greater that the world will be locked in to 1.5 degrees Celsius (2.7 degrees Fahrenheit) of long-term warming since preindustrial times. That level of gas accumulation, which comes from the burning of fuels like gasoline, oil and coal, is sooner than the same group of 60 international scientists calculated in a study last year.

“Things aren’t just getting worse. They’re getting worse faster,” said study co-author Zeke Hausfather of the tech firm Stripe and the climate monitoring group Berkeley Earth. “We’re actively moving in the wrong direction in a critical period of time that we would need to meet our most ambitious climate goals. Some reports, there’s a silver lining. I don’t think there really is one in this one.”

That 1.5 goal, first set in the 2015 Paris agreement, has been a cornerstone of international efforts to curb worsening climate change. Scientists say crossing that limit would mean worse heat waves and droughts, bigger storms and sea-level rise that could imperil small island nations. Over the last 150 years, scientists have established a direct correlation between the release of certain levels of carbon dioxide, along with other greenhouse gases like methane, and specific increases in global temperatures.

In Thursday's Indicators of Global Climate Change report, researchers calculated that society can spew only 143 billion more tons (130 billion metric tons) of carbon dioxide before the 1.5 limit becomes technically inevitable. The world is producing 46 billion tons (42 billion metric tons) a year, so that inevitability should hit around February 2028 because the report is measured from the start of this year, the scientists wrote. The world now stands at about 1.24 degrees Celsius (2.23 degrees Fahrenheit) of long-term warming since preindustrial times, the report said.

Earth's energy imbalance

The report, which was published in the journal Earth System Science Data, shows that the rate of human-caused warming per decade has increased to nearly half a degree (0.27 degrees Celsius) per decade, Hausfather said. And the imbalance between the heat Earth absorbs from the sun and the amount it radiates out to space, a key climate change signal, is accelerating, the report said.

“It's quite a depressing picture unfortunately, where if you look across the indicators, we find that records are really being broken everywhere,” said lead author Piers Forster, director of the Priestley Centre for Climate Futures at the University of Leeds in England. “I can't conceive of a situation where we can really avoid passing 1.5 degrees of very long-term temperature change.”

The increase in emissions from fossil-fuel burning is the main driver. But reduced particle pollution, which includes soot and smog, is another factor because those particles had a cooling effect that masked even more warming from appearing, scientists said. Changes in clouds also factor in. That all shows up in Earth’s energy imbalance, which is now 25% higher than it was just a decade or so ago, Forster said.

Earth’s energy imbalance “is the most important measure of the amount of heat being trapped in the system,” Hausfather said.

Earth keeps absorbing more and more heat than it releases. “It is very clearly accelerating. It’s worrisome,” he said.

Crossing the temperature limit

The planet temporarily passed the key 1.5 limit last year. The world hit 1.52 degrees Celsius (2.74 degrees Fahrenheit) of warming since preindustrial times for an entire year in 2024, but the Paris threshold is meant to be measured over a longer period, usually considered 20 years. Still, the globe could reach that long-term threshold in the next few years even if individual years haven't consistently hit that mark, because of how the Earth's carbon cycle works.

That 1.5 is “a clear limit, a political limit for which countries have decided that beyond which the impact of climate change would be unacceptable to their societies,” said study co-author Joeri Rogelj, a climate scientist at Imperial College London.

The mark is so important because once it is crossed, many small island nations could eventually disappear because of sea level rise, and scientific evidence shows that the impacts become particularly extreme beyond that level, especially hurting poor and vulnerable populations, he said. He added that efforts to curb emissions and the impacts of climate change must continue even if the 1.5 degree threshold is exceeded.

Crossing the threshold "means increasingly more frequent and severe climate extremes of the type we are now seeing all too often in the U.S. and around the world — unprecedented heat waves, extreme hot drought, extreme rainfall events, and bigger storms,” said University of Michigan environment school dean Jonathan Overpeck, who wasn't part of the study.

Andrew Dessler, a Texas A&M University climate scientist who wasn't part of the study, said the 1.5 goal was aspirational and not realistic, so people shouldn’t focus on that particular threshold.

“Missing it does not mean the end of the world,” Dessler said in an email, though he agreed that “each tenth of a degree of warming will bring increasingly worse impacts.”