Clockwise from top left: Sean Kelly of Amperon, Dianna Liu of ARIXTechnologies, Matthew Dawson of Elementium Materials, Vibhu Sharma of InnoVent Renewables, Cindy Taff of Sage Geosystems, and Emma Konet of TierraClimate. Photos courtesy

From finding funding to navigating the pace of traditional oil and gas company tech adoption, energy transition companies face their fair share of challenges.

This year's Houston Innovation Awards finalists in the Energy Transition category explained what their biggest challenge has been and how they've overcome it. See what they said below, and make sure to secure your tickets to the Nov. 14 event to see which of these finalists win the award.

"The evolving nature of the energy industry presents opportunities to solve some of our industry's greatest challenges. At Amperon we help optimize grid reliability and stability with the power of AI demand forecasting." 

Sean Kelly, CEO of Amperon, an AI platform powering the smart grid of the future

"The biggest challenge in leading an energy transition-focused startup has been balancing the urgency for sustainable solutions with the slow pace of change in traditional industries like oil and gas. Many companies are cautious about adopting new technologies, especially when it comes to integrating sustainability initiatives. We overcame this by positioning our solutions not just as environmentally friendly, but as tools that improve safety, efficiency, and cost savings. By aligning our value proposition with their operational goals and demonstrating real, measurable benefits, we were able to gain traction and drive adoption in industries that are traditionally resistant to change." 

— Dianna Liu, CEO of ARIXTechnologies, an integrated robotics and data analytics company that delivers inspection services through its robotics platforms

"Scaling up production of hard tech is a major challenge. Thankfully, we recruited top-notch talent with experience in technology scale-up and chemical processes. In addition, we've begun building partnerships with some of the world's largest chemical manufacturers in our space who are excited to be a part of our journey and could rapidly accelerate our go to market strategy. We have significant demand for our product as early as 2025, so partnering with these companies to scale-up will bring our technology to market years ahead of doing it alone."

— Matthew Dawson, CEO of Elementium Materials, a battery technology with liquid electrolyte solutions

"Our pyrolysis reactor is a proprietary design that was developed during Covid. We ran simulations to prove that it works, but it was not easy to test it in a pilot facility, let alone scaling it up. We managed ... to run our pilot plant studies, while working with them remotely. We proved that our reactor worked and produced high quality products. Later, we built our own pilot plant R&D facility to continue running tests and optimizing the process. Then, there was the challenge of scaling it up to commercial size. ... We put together a task force of four different companies to come together to design and build this complex reactor in record time."

— Vibhu Sharma, CEO of InnoVent Renewables, a startup with proprietary continuous pyrolysis technology that converts waste tires, plastics, and biomass into valuable fuels and chemicals

"Energy storage and geothermal power generation are capital-intensive infrastructure projects, requiring investors with a deep commitment and the patience in terms of years to allow the technology to be developed and proven in the field. One challenge is finding that niche of investors with the vision to join our journey. We have succeeded in raising our $30 million series A with these types of investors, whom we’re confident will continue the journey as we scale." 

— Cindy Taff, CEO of Sage Geosystems, an energy company focused on developing and deploying advanced geothermal technologies to provide reliable power and sustainable energy storage solutions regardless of geography

"The biggest challenge we've faced has been to bring together massive independent power producers on one side who are investing hundreds of millions of dollars into grid infrastructure with multi- national tech giants on the other that don't have experience working much with energy storage. As a startup with only four employees, gaining credibility with these players was critical. We overcame this hurdle by becoming the preeminent thought leader on storage emissions, through publishing white papers, discussing the issues on podcasts, and (more)."

— Emma Konet, CTO of TierraClimate, a software provider that helps grid-scale batteries reduce carbon emissions

Tyler Lancaster, a Chicago-based investor with Energize Capital, shares his investment thesis and why Houston-based Amperon caught his eye. Photo courtesy of Energize Capital

Investor on Texas as a climatetech hub, disruption opportunities with the grid, and more

Q&A

One of the biggest challenges to the energy transition is finding the funds to fuel it. Tyler Lancaster, partner at Energize Capital, is playing a role in that.

Energize Capital, based in Chicago, is focused on disruptive software technology key to decarbonization. One of the firm's portfolio companies is Amperon, which raised $20 million last fall.

In an interview with EnergyCapital, Lancaster shares what he's focused on and why Amperon caught Energize Capital's attention.

EnergyCapital: Energize Capital has been investing in climate tech for the better part of a decade now. What types of companies are you looking for and how are these companies’ technologies affecting the greater energy transition?

Tyler Lancaster: We partner with best-in-class innovators to accelerate the sustainability transition. This means identifying climate technology companies at various stages of maturity — from early commercialization to approaching the public markets — that we can help scale and realize their full potential. We invest in software-first climate technology businesses, with a focus on asset-light digital solutions that can help scale sustainable innovation and enable the new energy economy. Our portfolio currently drives software applications across renewable energy, industrial operations, electrification & mobility, infrastructure resilience, and decarbonization. We primarily focus on proven, commercially available and economically viable energy transition solutions (solar, wind, batteries, heat pumps, etc.). These solutions suffer from challenges related to efficient deployment or operations, where enabling digital platforms can play a key role in optimizing costs.

EC: Amperon is one of Energize Capital's portfolio companies. What made the company a great investment opportunity for Energize Capital?

TL: Accelerating the energy transition will require critical forecasting tools like what Amperon provides. This is underscored by the escalating impact of extreme weather events, increasing penetration of variable energy resources, like wind and solar, on the supply side, and surging demand growth driven by flexible loads and rapid electrification. We believe the need for Amperon’s platform will only continue to grow, and their increased raise from Series A to Series B showed they are scaling smartly. We’ve also known Sean Kelly, Abe Stanway, and the entire Amperon team for a long time, and building strong relationships with founders is how we like to do business. Amperon has built a blue-chip customer base in the energy sector in a very capital efficient manner, which is more important than ever for startups operating in the current equity market environment.

EC: One of the energy transition’s biggest problems is sourcing and storing reliable and affordable energy. What have you observed are the biggest problems with Texas’ electricity grid and what types of new tech can help improve these issues?

TL: Today’s electricity grid and the demands we’re putting on it look very different than they ever have. Major changes in climate and extreme weather show how perilous and unreliable the power grids in this country are, particularly in regions like Texas that don’t have the right infrastructure to shield grids from unusual temperatures — just look at the damage done by 2021’s historic Winter Storm Uri. And consumer demand for electricity is increasing as electrification accelerates globally. The makeup of the grid itself is shifting from centralized power plants to distributed clean energy assets like solar arrays and wind turbines, which brings issues of intermittent electricity production and no traditional way to forecast that.

Tech solutions like Amperon are the only way to navigate the nuances of the energy transition. With global net-zero goals and impending Scope II accounting, Amperon’s expertise in granular data management further enables companies to build accurate, dynamic forecasting models with smart meter data and get more visibility into anticipated market shifts so they can optimize their energy use — all of which helps to create a more resilient and reliable power grid.

EC: You are also on the board of the company, which recently announced a collaboration with Microsoft’s tech. What doors does this open for Amperon?

TL: Partnering with Microsoft and offering its energy demand forecasting solution on the Azure platform enables Amperon to better serve more companies that are navigating the energy transition and a rapidly evolving grid. Many power sector companies are also undergoing cloud migrations with Microsoft Azure having high market share. This partnership will specifically accelerate Amperon’s reach with utility customers, who typically have slower sales cycles but can greatly benefit from improved accuracy in energy demand forecasting and adoption of AI technologies.

EC: As a non-Texas investor, how do you see Houston and Texas-based companies’ investability? Has it changed over the years?

TL: While most tech startups are concentrated on the coasts and in Europe, we see Texas emerging as a hub for energy and climate focused startups due to its vicinity to energy giants, which represent potential customers. Texas leads the country in renewable energy production and sits at the forefront of the transition. Energy companies based in this region are relying on technology innovation and software tools to modernize operations and meet the evolving demands of their customers.

———

This conversation has been edited for brevity and clarity.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Enbridge's new Texas solar project to power Meta data centers

solar deal

Construction is underway on a new 600-megawatt solar project in Texas that will supply renewable energy to Meta Platforms Inc., the owner of Facebook, Instagram and other tech platforms.

Calgary-based Enbridge Inc., whose gas transmission and midstream operations are based in Houston, announced that Meta has agreed to purchase 100 percent of the power generated by its new $900 million solar project known as Clear Fork.

The clean energy developed at Clear Fork will be used to support Meta’s data center operations, according to a news release from Enbridge. Meta has had net-zero emissions across its operational portfolio since 2020, according to its 2024 environmental report. The company matches 100 percent of its data center usage with renewable energy.

"We are thrilled to partner with Enbridge to bring new renewable energy to Texas and help support our operations with 100% clean energy, " Urvi Parekh, Head of Global Energy at Meta, said in a news release.

The Clear Fork project is expected to be operational by the summer of 2027. It will join Enbridge’s first solar power project in Texas, Orange Grove, which was activated earlier this year, as well as the company’s Sequoia solar project, which is scheduled to go online in early 2026.

"Clear Fork demonstrates the growing demand for renewable power across North America from blue-chip companies who are involved in technology and data center operations," Matthew Akman, executive vice president of corporate strategy and president of power at Enbridge, said in the news release. "Enbridge continues to advance its world-class renewables development portfolio using our financial strength, supply chain reach and construction expertise under a low-risk commercial model that delivers strong competitive returns."

Energy experts: Executive order enhances federal permitting for AI data centers

Guest column

In an effort to accelerate the development of artificial intelligence, President Trump signed an executive order (EO) aimed at expediting the federal permitting process for data centers, particularly those supporting AI inference, training, simulation, or synthetic data generation.

Following the White House’s issuance of a broader AI Action Plan, the EO seeks to streamline regulatory burdens and utilize federal resources to encourage the development of data centers supporting AI, as well as the physical components and energy infrastructure needed to construct and provide power to these data centers.

Qualifying Projects

The EO directs several federal agencies to take actions to incentivize the development of “Qualifying Projects,” which the EO defines as “Data Centers” and “Covered Component Projects.” The EO defines “Data Center Projects” as facilities that require over 100 megawatts (MW) of new load dedicated to AI inference, training, simulation, or synthetic data generation. The EO defines Covered Component Projects as materials, products, and infrastructure that are required to build Data Center Projects or upon which Data Center Projects depend, including energy infrastructure projects like transmission lines and substations, dispatchable base load energy sources like natural gas, geothermal, and nuclear used principally to power Data Center Projects, and semiconductors and related equipment. For eligibility as a Qualifying Project, the project sponsor must commit at least $500 million in capital expenditures. Data Center Projects and Covered Component Projects may also meet the definition of Qualifying Project if they protect national security or are otherwise designated as Qualifying Projects by the Secretary of Defense, Secretary of the Interior, Secretary of Commerce, or Secretary of Energy.

Streamlining Permitting of Qualifying Projects

The EO outlines the following strategies aimed at improving the efficiency of environmental reviews and permitting for Qualifying Projects:

  • NEPA Applicability: The Council on Environmental Quality (CEQ), in coordination with relevant agencies, is directed to utilize existing and new categorical exclusions under the National Environmental Policy Act (NEPA) to cover actions related to Qualifying Projects, which “normally do not have a significant effect on the human environment.” The EO states that where federal financial assistance represents less than 50 percent of total project costs of a Qualifying Project, the Project shall be presumed not to be a “major Federal action” requiring NEPA review.
  • FAST-41: The Executive Director of the Federal Permitting Improvement Steering Council (FPISC) is empowered to designate a Qualifying Project as a “transparency project” under the Fixing America’s Surface Transportation Act (FAST-41) and expedite its transition from a transparency project to a “covered project” under FAST-41. FPISC is directed to consider all available options to designate a Qualifying Project as a FAST-41 covered project, even where the Qualifying Project may not be eligible.
  • EPA Permitting: The US Environmental Protection Agency (EPA) is directed to modify applicable regulations under several environmental protection statutes impacting the development of Qualifying Projects on federal and non-federal lands. EPA is also directed to develop guidance to expedite environmental reviews for identification and reuse of Brownfield and Superfund Sites suitable for Qualifying Projects. Importantly, state environmental permitting agencies are not subject to the EO.
  • Corps Permitting: The US Army Corps of Engineers is directed to review the nationwide permits issued under Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act of 1899 to determine whether an activity-specific nationwide permit is needed to facilitate the efficient permitting of activities related to Qualifying Projects.
  • Interior Permitting: The US Department of the Interior is directed to consult with the US Department of Commerce regarding the streamlining of Endangered Species Act consultations for Qualifying Projects, and to work with the US Department of Energy to identify federal lands that may be available for use by Qualifying Projects and offer appropriate authorizations to project sponsors.

Federal Incentives for Qualifying Projects

The EO also directs the US Secretary of Commerce to “launch an initiative to provide financial support for Qualifying Projects,” which may include loans, grants, tax incentives, and offtake agreements. The EO further directs all “relevant agencies” to identify and submit to the White House Office of Office of Science and Technology Policy any relevant existing financial support that can be used to assist Qualifying Projects, consistent with the protection of national security.

The EO reinforces the Trump administration’s focus on AI and creates new opportunities for both AI data center developers and energy infrastructure companies providing power or project components to these data centers. Proactive engagement with relevant agencies will be crucial for capitalizing on the opportunities created by this EO and the broader AI Action Plan. By leveraging these financial and environmental incentives, project developers may be able to shorten permitting timelines, reduce costs, and take advantage of federal financial support.

---

Jason B. Hutt, Taylor M. Stuart and Anouk Nouet are lawyers at Bracewell. Hutt is chair of the firm’s environment, lands and resources department. Stuart counsels energy, infrastructure, and industrial clients on matters involving environmental and natural resources law and policy. Nouet advises clients on litigation, enforcement and project development matters with a focus on complex environmental and natural resources law and policy.

Houston clean-chemicals startup Solidec raises $2M to scale tech

fresh funding

Solidec, a Houston startup that specializes in manufacturing “clean” chemicals, has raised more than $2 million in pre-seed funding.

Houston-based New Climate Ventures led the oversubscribed pre-seed round, with participation from Plug and Play Ventures, Ecosphere Ventures, the Collaborative Fund, Safar Partners, Echo River Capital and Semilla Climate Capital, among other investors.

Solidec’s approach to chemical manufacturing replaces centralized infrastructure with modular on-site production using only air, water and electricity. Solidec’s platform is powered by modular reactors capable of producing widely used chemicals such as hydrogen peroxide, formic acid, acetic acid and ethylene.

“We’ve known the Solidec team for almost two years and have developed a high degree of conviction in the team, their technology, and their go-to-market strategy,” Eric Rubenstein, managing partner at New Climate Ventures, said in a news release. “We’re particularly excited about Solidec’s ability to produce many different widely used chemicals. It gives them critical flexibility to expand and serve a broad customer base.”

Solidec is initially focusing on hydrogen peroxide.

“Traditionally, hydrogen peroxide is produced in centralized, energy-intensive facilities using carbon-intensive inputs, then transported long distances, resulting in a significant carbon footprint,” Ryan DuChanois, co-founder and CEO of Solidec, said in the release. “Solidec’s modular reactor produces clean chemicals like hydrogen peroxide on-site, in fewer steps, and with less energy, slashing emissions, supply-chain risk, and cost.”

Solidec said its technology “is poised to disrupt the multibillion-dollar commodity and chemical industries.” The company has already signed up several customers.

The startup, a Rice University spinout, is a graduate of the Chevron Catalyst Program and a member of Greentown Labs Houston. It was cofounded by DuChanois, Haotian Wang and Yang Xia.