Andrew Yang offers entrepreneurial advice to startups in the thriving Innovation Corridor seated in midtown Houston. Photo courtesy of Lauren M. Postler/Andrew Yang.

It’s not every day that an entrepreneur gets grilled on their go-to-market-plans by a former presidential candidate, but for a few nascent businesses, that’s just what happened last Friday at Greentown Labs Houston.

Grilled is perhaps too strong a term, as Andrew Yang, an entrepreneur turned politician, conversed convivially with a half-dozen growing businesses in the thriving Innovation Corridor seated in midtown Houston. Yang listened carefully to each company’s elevator pitch, interrupting only to exclaim, “that’s so cool!” and “congratulations, man!” like an awestruck coed before asking thoughtful questions about the journey ahead for each entrepreneur.

Lara Cottingham, vice president of strategy, policy, and climate impact at Greentown Labs Houston, set the tone for the tour with an overview of Greentown Labs and the entrepreneurial efforts in energy transition it supports.

“[Greentown Labs was] founded 12 years ago. We’ve supported about 550 startups. Our startups have created over 24,000 jobs – and that’s just in Boston and Texas,” says Cottingham. “We don’t really know how to fully measure everywhere, but they are operating globally.

“Our startups have raised about $4 billion dollars. Half of that was last year,” Cottingham continues. “When we talk about now being the time to be in climatetech, now is the time.”

The tour begins with WIP International Services, a start up solving the problem of thirst and water scarcity by extracting moisture from humid environments and converting it into usable water.

pouring water into tall glassesWIP International Services aims to make drinking water more readily available in humid locations. Image via Shutterstock.

“We can produce a purely distilled product, or a mineralized, pH balanced product for potable water,” explains Tracy L. Jackson, CEO of WIP International Services LLC.

The small group tagging along with Yang cheers the idea of creating clean water to drink while lowering the humidity of their homes, and effectively, their demand on energy for air-conditioning in a city that is now well into three-digit summer temperatures with average outdoor humidity above 70 percent.

Jackson almost stumbled into her startup by accident 8 years ago. She was visiting a site in Louisiana working on algae solutions, where she encountered an earlier (and much larger and noisier) model of the unit that stood in front of her now, no bigger than a standard water cooler. Inspired by scenes she witnessed in Africa during her tenure with an oilfield services company, Jackson knew this was a solution too good to keep quiet.

“Because I had been in Africa – I worked in an oil and gas services company – I had seen people standing in line for water from a water well in a village. And I thought, ‘this would be perfect for that situation,’” Jackson tells the tour group. “We now have developing relationships in Africa as well as Mexico on large scale projects for atmospheric water generation.”

At the next stop, Reid Carrazzone, president and CEO of Top Grain Technologies, softly explains how he and Zack Cordero, chief scientific officer, address the challenges of long-lead times and harsh environments impeding the ability to get hydrogen-fired turbines 100 percent hydrogen-fired.

close up of 3D printer making metal objectTop Grain Technologies resolves how to make 3D printed metals more heat resistant. Image via Shutterstock.

“We are commercializing a heat treatment invented at MIT that will enable 3D-printed metal materials to serve in combustion turbine engines,” Carrazzone tells Yang. “Traditionally, 3D-printed metals are not well-suited to serving the environments of high temperature/high stress that you’d find in jet engines and natural gas settings.

“These [3D-printed] materials, certain classes of them, can be uniquely hydrogen-compatible, as well as have temperature capabilities in excess of the existing materials today,” Carrazzone says. “They will need our heat treatment to bridge that final gap in properties.”

Yang lights up with at the prospect that the duo may have come up with a truly unique solution, even suggesting the company may be in a name-your-own-price situation. The Top Grain Technologies team accepts the compliment with humility, insisting it’s more about solving the simple problems one step at a time.

Companies that Yang met along the Greentown Labs workshop floor represent just a fraction of the innovation proliferating across Houston in recent years, each with a different focus on energy sustainability and the circular economy. Maybe one day Yang, Jackson, and Carrazzone will look back on this interaction and think, “I knew them when…” Only time, and continued tending to the entrepreneurial spirit, will tell.

Energy Transition and Digital Transformation collide at next week's Can't Miss energy event. Image via Shutterstock.

Can't Miss: Reuter's Data-Driven Oil and Gas Conference

DIGITAL SUSTAINABILITY

June 20-21 | Reuter’s Data-Driven Oil and Gas Conference

Energy Transition and Digital Transformation collide at next week’s Data-Driven Oil and Gas USA 2023 conference from Reuter’s Events. Join leaders in technology as they discuss digital best practices in upstream energy and how to balance going beyond Industry 4.0 with goals for energy sustainability.

“Reuters Events: Data Driven Oil & Gas 2023 will be the space for decision makers to get together to take their business to the next level by overcoming cultural blockers, breaking down silos and exploring innovative technologies to improve the bottom line and maximize output,” says Lee Cibis, global project director for oil and gas at Reuters Events.

With a robust speaker lineup, attendees can expect to hear insightful case studies, lessons learned, and visions for a lower-carbon energy future enabled by digitalization and innovative technologies. Be sure to catch a multi-operator perspective at the Tuesday panel, “One Common Goal,” which appears to echo sentiments from OTC about the importance of partnering, with emphasis on the data interoperability needed from and between vendors and operators alike.

Asking ChatGPT what all was made from petroleum produced surprising results - the answer: everything. Photo by Sanket Mishra/Unsplash

Energy truly IS everywhere according to ChatGPT

EVERYDAY ENERGY

I sat down to have a conversation with ChatGPT from OpenAI about energy by-products; specifically, everyday items we use that contain some form of petrochemicals. My first prompt was rather broad, so I wasn’t surprised to get back a rather broad answer highlighting product categories instead of specific examples. Plastics, synthetic fibers, cleaning products, personal care products, medicines, paints & coatings, and adhesives were all succinctly summarized, but I wanted to dive deeper.

Given that AI has an almost limitless reach, I asked for a comprehensive list of all the products we use in everyday life that are made from petrochemicals. Turns out, ChatGPT has some healthy boundaries, so it pushed back, only offering a slightly more detailed list of the categories produced from the first prompt.

Not to be deterred, I asked for additional examples. I didn’t want to continue getting spoon-fed 10 items at a time, so I asked for 200. Less than comprehensive, more than the crumbs I was getting.

In entertaining fashion, ChatGPT told me compiling a list of 200 items might be challenging, but that it could offer up 100. The brazen negotiation made me smile.

I complimented the list and nudged a bit, encouraging ChatGPT it could come up with another 100 items if it tried. Much like a teenager wishes to stave off further questioning from a nosy parent, ChatGPT proffered up a second response of 100 items–almost half of which were simply things before which it added the qualifier “synthetic.” Salty.

As my intention is not to bore you, but rather enhance the knowledge of our readers by understanding how pervasive petrochemical products are in our everyday life, I settled on a more direct inquiry with a capped demand prompt: “What would you say are the 10 most surprising things in common everyday use that contain petrochemical products?”

Most of the answers featured wax-based products, like lotions, crayons, and lipstick–not necessarily earth-shattering realizations given my familiarity with cosmetics as petroleum by-products. I was pleasantly surprised to learn that chewing gum, with its synthetic rubber base enabling theoretically endless chewing, is derived from petroleum. I was also surprised to learn that many artificial sweeteners, like saccharin and aspartame, are made from petrochemicals. Huh.

There was one item on the list, however, that helped me see how truly pervasive the energy industry is, and not just for petrochemicals. Tucked in nonchalantly at #6 was Deodorant. My brain jumped immediately to the waxy base of a solid sweat deterrent, but my eyes got a curveball. ChatGPT writes, “Many deodorants contain aluminum, which is often derived from bauxite, a mineral that is usually mined from the earth using petroleum-powered machinery.” Now that was an answer I wasn’t expecting.

While my initial inference stood true – the smooth glide of a buttery solid antiperspirant is without a doubt derived from petrochemicals (not to mention the plastic packaging surrounding it), I wasn’t expecting ChatGPT to rope in the oft petroleum-fueled tools used to make said product. If that’s true, then nearly every item on the planet is derived from petroleum. Or at the very least, some source of energy. Regardless of whether the machinery used runs on gasoline, electricity, or wind power, literally almost everything that is produced on this earth is related to the energy industry.

Even if it’s hand-made, it’s technically still energy-adjacent, assuming we all bathe regularly with soap, yet another on the list of commonly used items derived from petroleum by-products. It’s certainly directly powering some manual activities, for those busting stress and bad breath with gum, or drinking a diet soda to power through. No pun intended.

I share this amusing tale simply to clarify the ubiquitous nature of energy in all parts of the modern world. As we look toward the #futureofenergy, we must be cognizant of its universal reach. It’s not necessarily realistic to switch from one source of energy to another overnight, but we do have a responsibility to seek cleaner, healthier, more efficient sources of energy while sustaining the life to which we have all grown accustomed.

Much like ChatGPT thought she couldn’t come up with 200 items derived from petroleum products, many think Houston will be unable to drive the Energy Transition, given our extensive petroleum focus. But like so many fellow Houstonians before us, we love a good challenge.

Just keep prompting us, and we’ll eventually unlock infinite potential for the #futureofenergy. It’s a limitless time to be in Houston, absorbing wisdom the city so willingly wants to share with the growing ecosystem of innovators. Just ask the growing number of almost 5,000 Energy-related firms in Houston. We’re just getting started.

------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Rising temps could result in rolling brownouts this summer–unless we work together to reduce the strain on the electric grid. Photo via Shutterstock

NERC warns of summer energy shortfalls–what you can do now

THINGS ARE HEATING UP

The North American Electric Reliability Council (NERC) issued a warning with the 2023 Summer Reliability Assessment yesterday – energy shortages could be coming this summer for two-thirds of North America if temperatures spike higher than normal.

“Increased, rapid deployment of wind, solar and batteries have made a positive impact,” Mark Olson, NERC’s manager of reliability assessments says in the release. “However, generator retirements continue to increase the risks associated with extreme summer temperatures, which factors into potential supply shortages in the western two-thirds of North America if summer temperatures spike.”

For Texans, the combined risk of drought and higher-than-normal temperatures could stress ERCOT system resources, especially in the case of reduced wind. But before there’s a mad rush on generators, keep in mind, electricity consumers can take simple actions to minimize the possibility of widespread shortfalls.

Electricity demand begins rising daily around 2 P.M. in the summer and peaks in the final hours of daylight. These hours are generally not only the warmest hours of the day but also the busiest. People return from work to their homes, crank down the air conditioner, turn on TVs, run a load of wash, and prepare meals using multiple electric-powered appliances.

If everyone takes one or two small steps to avoid unnecessary stress on the grid in the hours after coming home from work, we can prevent energy shortfalls. Modify routines now to get into the habit of running the dishwasher overnight, using the washer and dryer before noon or after 8 pm and pulling the shades down in the bright afternoon hours of the day.

Try to delay powering up devices – including EVs – until after dark. Turn off and unplug items to avoid sapping electricity when items are not in use. And if you can bear it, nudge that thermostat up a couple of degrees.

Energy sustainability demands consistent collaboration and coordination from every consumer of energy. Let’s get in the habit of acting neighborly now with conservative electricity practices before we start seeing temperatures–of both the literal and figurative kind–flare.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston companies partner to advance industrial carbon capture tech

green team

Carbon Clean and Samsung E&A, both of which maintain their U.S. headquarters in Houston, have formed a partnership to accelerate the global use of industrial carbon capture systems.

Carbon Clean provides industrial carbon capture technology. Samsung E&A offers engineering, construction and procurement services. The companies say their partnership will speed up industrial decarbonization and make carbon capture more accessible for sectors that face challenges in decarbonizing their operations.

Carbon Clean says its fully modular columnless carbon capture unit, known as CycloneCC, is up to 50 percent smaller than traditional units and each "train" can capture up to 100,000 tonnes of CO2 per year.

“Our partnership with Samsung E&A marks a major milestone in scaling industrial carbon capture,” Aniruddha Sharma, chair and CEO of Carbon Clean, said in a news release.

Hong Namkoong, CEO of Samsung E&A, added that the partnership with Carbon Clean will accelerate the global rollout of carbon capture systems that “are efficient, reliable, and ready for the energy transition.”

Carbon Clean and Samsung E&A had previously worked together on carbon capture projects for Aramco, an oil and gas giant, and Modec, a supplier of floating production systems for offshore oil and gas facilities. Aramco’s Americas headquarters is also in Houston, as is Modec’s U.S. headquarters.

Major Houston energy companies join new Carbon Measures coalition

green team

Six companies with a large presence in the Houston area have joined a new coalition of companies pursuing a better way to track the carbon emissions of products they manufacture, purchase and finance.

Houston-area members of the Carbon Measures coalition are:

  • Spring-based ExxonMobil
  • Air Liquide, whose U.S. headquarters is in Houston
  • Mitsubishi Heavy Industries, whose U.S. headquarters is in Houston
  • Honeywell, whose Performance Materials and Technologies business is based in Houston.
  • BASF, whose global oilfield solutions business is based in Houston
  • Linde, whose Linde Engineering Americas business is based in Houston

Carbon Measures will create an accounting framework that eliminates double-counting of carbon pollution and attributes emissions to their sources, said Amy Brachio, the group’s CEO. The model is expected to take two years to develop, and between five and seven years to scale up, Bloomberg reported.

The coalition wants to create a system that will “unleash markets and competition,” unlock investments and speed up the pace of emissions reduction, said Brachio, former vice chair of sustainability at professional services firm EY.

“If you can’t measure it, you can’t manage it,” said Darren Woods, chairman and CEO of ExxonMobil. “The first step to reducing global emissions is to know where they’re coming from — and today, we don’t have an accurate system to do this.”

Other members of the coalition include BlackRock-owned Global Infrastructure Partners, Banco Satanader, EY and NextEra Energy.

“Transparent and consistent emissions accounting is not just a technical necessity — it’s a strategic imperative. It enables smarter decisions and accelerates real progress across industries and borders,” said Ken West, president and CEO of Honeywell Energy and Sustainability Solutions.

Wind and solar supplied over a third of ERCOT power, report shows

power report

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.