Amperon CEO Sean Kelly discuss the AI revolution in energy forecasting. Photo via LinkedIn

“Forecasting isn’t just about demand anymore—it’s about net demand, accounting for the variability of renewables like wind and solar.”

This insight from Sean Kelly, co-founder and CEO of Amperon, captures the seismic shift occurring in energy forecasting. With renewables surging, grid dynamics growing more complex, and demand more unpredictable than ever, the stakes have never been higher.

On a recent Energy Tech Startups Podcast, Kelly breaks down how Amperon’s AI-driven platform is transforming the way energy providers anticipate demand, mitigate risk, and embrace renewables. Named one of the Top 50 AI Companies in the U.S. by Andreessen Horowitz, Amperon is pushing the boundaries of what’s possible in energy technology.

Here’s a closer look at Kelly’s journey, the challenges he’s tackling, and the insights driving Amperon’s success.

What problem is Amperon solving?

Why does the energy sector need better forecasting now?
The energy grid is evolving at lightning speed. With 25 gigawatts of wind and 20 gigawatts of solar in Texas alone, the focus has shifted from simple demand forecasting to net demand forecasting. It’s not just about predicting how much electricity people will use—it’s about understanding how renewables will interact with that demand.

For example, if it’s a windy day in Texas, prices drop, and the grid behaves very differently. Accurate forecasting helps providers mitigate risk, plan ahead, and prevent costly errors in buying or selling electricity.

The Amperon approach: Why AI is essential

What sets Amperon’s technology apart?
Our models retrain every hour—not every month or even daily. Since launching in 2018, we’ve been continuously learning and adapting to the grid’s behavior. This is critical because the energy sector’s complexity is increasing every day.

We also leverage data from over 10 million meters across the U.S. and Europe, giving us unmatched insights into both individual assets and entire markets. Our tech isn’t about static solutions; it’s dynamic, evolving alongside the grid.

Building for scale: A strategic playbook

How has Amperon scaled from a Houston startup to a global player?
It starts with focus. We began with a clear problem: helping Texas retailers manage risk in a deregulated market. From there, we expanded into other customer segments—traders, public utilities, independent power producers, and more.

Partnerships have been key, too. For example, Microsoft has been instrumental in connecting us with utilities through the Azure marketplace. These collaborations not only enhance credibility but also streamline access to new customers.

The Case for Better AI in Energy

Kelly believes the energy industry is overdue for a technological overhaul. While legacy companies rely on outdated models, Amperon is built on cloud-native AI systems that can handle today’s complexity.

“The challenge isn’t just predicting demand—it’s adapting to constant change,” Kelly says. “Legacy systems weren’t built for this level of complexity. AI that learns every hour is no longer optional—it’s essential.”

Lessons for Entrepreneurs

  1. Stay Customer-Centric: Amperon’s early success came from solving a clear, urgent need for Texas energy retailers. “Product-market fit is everything,” Kelly emphasizes.
  2. Invest in Talent: By hiring data scientists from top companies like Google and Meta, Amperon has built a team capable of tackling the hardest problems.
  3. Leverage Partnerships: Collaborations with players like Microsoft have amplified Amperon’s reach and trust in the market.

What’s next for Amperon?

With over $30 million raised and a rapidly growing global presence, Amperon is doubling down on innovation. The company plans to expand its asset-level forecasting capabilities and deepen its presence in international markets.
“The energy transition is running through Houston,” Kelly says. “This city has the talent, the capital, and the expertise to lead the way.”

Listen to the full episode with Sean Kelly on the Energy Tech Startups Podcast here.

---

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.


Amperon CEO Sean Kelly says that in a month, his company's tech will be live in 25 countries. Photo via LinkedIn

Houston data analytics company makes impact on energy transition, expands in European market

podcast

Sean Kelly says he didn't seek to start a clean tech company. He saw a need and opportunity for more accurate energy forecasting, and he built it.

But Amperon has made it on lists highlighting energy transition innovation on more than one occasion — and caught the eye of renewable energy giants.

"We don't brand ourselves as a clean tech company," Kelly, CEO and co-founder of Amperon, says on the Houston Innovators Podcast, "but we have four of the top six or eight wind providers who have all invested in Amperon. So, there's something there."

The technology that Amperon provides its customers — a comprehensive, AI-backed data analytics platform — is majorly key to the energy industry and the transition of the sector.

Amperon, which originally founded in 2018 before relocating to Houston a couple of years ago, is providing technology that helps customers move toward a lower carbon future.

"If you look at our customer base, Amperon is the heart of the energy transition. And Houston is the heart of the energy transition," he says.

Recently closing the company's $20 million series B round last fall led by Energize Capital, Amperon has tripled its team in the past 14 months.

With his growing team, Kelly also speaks to the importance of partnerships as the company scales. Earlier this month, Amperon announced that it is replatforming its AI-powered energy analytics technology onto Microsoft Azure. The partnership with the tech giant allows Amperon's energy sector clients to use Microsoft's analytics stack with Amperon data.

And there are more collaborations where that comes from.

"For Amperon, 2024 is the year of partnerships," Kelly says on the podcast. "I think you'll see partnership announcements here in the next couple of quarters."

Along with more partners, Amperon is entering an era of expansion, specifically in Europe, which Kelly says has taken place at a fast pace.

"Amperon will be live in a month in 25 countries," he says.

------

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas university's 'WaterHub' will dramatically reduce water usage by 40%

Sustainable Move

A major advancement in sustainability is coming to one Texas university. A new UT WaterHub at the University of Texas at Austin will be the largest facility of its kind in the U.S. and will transform how the university manages its water resources.

It's designed to work with natural processes instead of against them for water savings of an estimated 40 percent. It's slated for completion in late 2027.

The university has had an active water recovery program since the 1980s. Still, water is becoming an increasing concern in Austin. According to Texas Living Waters, a coalition of conservation groups, Texas loses enough water annually to fill Lady Bird Lake roughly 89 times over.

As Austin continues to expand and face water shortages, the region's water supply faces increased pressure. The UT WaterHub plans to address this challenge by recycling water for campus energy operations, helping preserve water resources for both the university and local communities.

The 9,600-square-foot water treatment facility will use an innovative filtration approach. To reduce reliance on expensive machinery and chemicals, the system uses plants to naturally filter water and gravity to pull it in the direction it needs to go. Used water will be gathered from a new collection point near the Darrell K Royal Texas Memorial Stadium and transported to the WaterHub, located in the heart of the engineering district. The facility's design includes a greenhouse viewable to the public, serving as an interactive learning space.

Beyond water conservation, the facility is designed to protect the university against extreme weather events like winter storms. This new initiative will create a reliable backup water supply while decreasing university water usage, and will even reduce wastewater sent to the city by up to 70 percent.

H2O Innovation, UT’s collaborator in this project, specializes in water solutions, helping organizations manage their water efficiently.

"By combining cutting-edge technology with our innovative financing approach, we’re making it easier for organizations to adopt sustainable water practices that benefit both their bottom line and the environment, paving a step forward in water positivity,” said H2O Innovation president and CEO Frédéric Dugré in a press release.

The university expects significant cost savings with this project, since it won't have to spend as much on buying water from the city or paying fees to dispose of used water. Over the next several years, this could add up to millions of dollars.

---

A version of this story originally appeared on our sister site, CultureMap Austin.

Report: Texas solar power, battery storage helped stabilize grid in summer 2024, but challenges remain

by the numbers

Research from the Federal Reserve Bank of Dallas shows that solar power and battery storage capacity helped stabilize Texas’ electric grid last summer.

Between June 1 and Aug. 31, solar power met nearly 25 percent of midday electricity demand within the Electric Reliability Council of Texas (ERCOT) power grid. Rising solar and battery output in ERCOT assisted Texans during a summer of triple-digit heat and record load demands, but the report fears that the state’s power load will be “pushed to its limits” soon.

The report examined how the grid performed during more demanding hours. At peak times, between 11 a.m. and 2 p.m. in the summer of 2024, solar output averaged nearly 17,000 megawatts compared with 12,000 megawatts during those hours in the previous year. Between 6 p.m. and 9 p.m., discharge from battery facilities averaged 714 megawatts in 2024 after averaging 238 megawatts for those hours in 2023. Solar and battery output have continued to grow since then, according to the report.

“Batteries made a meaningful contribution to what those shoulder periods look like and how much scarcity we get into during these peak events,” ERCOT CEO Pablo Vegas said at a board of directors conference call.

Increases in capacity from solar and battery-storage power in 2024 also eclipsed those of 2023. In 2023 ECOT added 4,570 megawatts of solar, compared to adding nearly 9,700 megawatts in 2024. Growth in battery storage capacity also increased from about 1,500 megawatts added in 2023 to more than 4,000 megawatts added in 2024. Natural gas capacity also saw increases while wind capacity dropped by about 50 percent.

Texas’ installation of utility-scale solar surpassed California’s in the spring of last year, and jumped from 1,900 megawatts in 2019 to over 20,000 megawatts in 2024 with solar meeting about 50 percent of Texas' peak power demand during some days.

While the numbers are encouraging, the report states that there could be future challenges, as more generating capacity will be required due to data center construction and broader electrification trends. The development of generating more capacity will rely on multiple factors like price signals and market conditions that invite more baseload and dispatchable generating capacity, which includes longer-duration batteries, and investment in power purchase agreements and other power arrangements by large-scale consumers, according to the report.

Additionally, peak demand during winter freezes presents challenges not seen in the summer. For example, in colder months, peak electricity demand often occurs in the early morning before solar energy is available, and it predicts that current battery storage may be insufficient to meet the demand. The analysis indicated a 50% chance of rolling outages during a cold snap similar to December 2022 and an 80% chance if conditions mirror the February 2021 deep freeze at the grid’s current state.

The report also claimed that ERCOT’s energy-only market design and new incentive structures, such as the Texas Energy Fund, do not appear to be enough to meet the predicted future magnitude and speed of load growth.

Read the full report here.

Houston clean energy pioneer earns prestigious Welch Foundation award

Awards Season

A Rice University professor has earned a prestigious award from the Houston-based Welch Foundation, which supports chemistry research.

The foundation gave its 2025 Norman Hackerman Award in Chemical Research to Haotian Wang for his “exceptionally creative” research involving carbon dioxide electrochemistry. His research enables CO2 to be converted into valuable chemicals and fuels.

The award included $100,000 and a bronze sculpture.

“Dr. Wang’s extensive body of work and rigorous pursuit of efficient electrochemical solutions to practical problems set him apart as a top innovator among early-career researchers,” Catherine Murphy, chairwoman of the foundation’s Scientific Advisory Board, said in a news release.

Wang is an associate professor in the Department of Chemical and Biomolecular Engineering at Rice. The department’s Wang Group develops nanomaterials and electrolyzers for energy and environmental uses, such as energy storage, chemical and fuel generation, green synthesis and water treatment.

Wang also is co-founder of Solidec, a Houston startup that aims to turn his innovations into low-carbon fuels, carbon-negative hydrogen and carbon-neutral peroxide. The startup extracts molecules from water and air, then transforms them into pure chemicals and fuels that are free of carbon emissions.

Solidec has been selected for Chevron Technology Ventures’ catalyst program, a Rice One Small Step grant, a U.S. Department of Energy grant, and the first cohort of the Activate Houston program.

“Dr. Wang’s use of electrochemistry to close the carbon cycle and develop renewable sources of industrial chemicals directly intersects with the Welch Foundation mission of advancing chemistry while improving life,” Fred Brazelton, chairman and director of the Welch Foundation, said in the release.

Ramamoorthy Ramesh, executive vice president for research at Rice University, added: “We are proud to (Dr. Wang) at Rice. He’s using chemical engineering to solve a big problem for humanity, everything that the Welch Foundation stands for.”

Last year, the Hackerman Award went to Baylor College of Medicine's Livia Schiavinato Eberlin, who's known for her groundbreaking work in the application of mass spectrometry technologies, which are changing how physicians treat cancer and analyze tissues. Read more here.