Ken Nguyen, principal technical program manager at bp, joins the Houston Innovators Podcast to discuss the company's new partnership with NASA. Photo courtesy of bp

Ken Nguyen oversees the implementation of new technologies at bp, which has its United States headquarters in Houston, and that includes software and hardtech, from cybersecurity to the digitization of the industry, which is an integral part of bp's energy transition plan.

"For bp, we do feel like as we transition as an international oil and gas company into an integrated energy company and we lean into the energy transition, the adoption of new technology is a critical part of making that viable for the planet and for the company," he says on the Houston Innovators Podcast.

According to Nguyen, principal technical program manager at bp, the company has invested its resources into exploring energy transition technologies like electric vehicle charging — including opening a fast-charging station at its Houston office — and renewable energy, including a solar farm about 10 miles northeast of Corpus Christi.

Another technology bp is keen on is digital twin technology, which can be crucial for enhancing safety for bp personnel and reducing emissions.

Nguyen says digital twin technology "allows us to be able to design and mirror scenarios with real-time variables, such as weather, off-take demands, and volatility."

Recently, in order to explore innovation within these technology verticals, bp and NASA entered into a Space Act Agreement with NASA.

"Houston has always been known as the Space City, and we're also known as the Energy Capital of the World, but there hasn't always been collaboration," Nguyen says. "The challenges that NASA is facing is very similar to the challenges that the oil industry faces — we operate in very harsh environments, safety is the most critical aspect of our operation, and now the economic business model for NASA has changed."

Nguyen explains that while both bp and NASA are navigating similar challenges and changes within their industry, they are going about it in different ways. That's where the opportunity to collaborate comes in.

The partnership, which is still new and not fully fleshed out, will look at collaborative innovation into a few focus areas to start out with, including hydrogen storage and development, AI and general intelligence, robotics, and remote operations

"Houston continues to excel — in energy production and in space exploration — but by coming together," Nguyen says, "and for us to be able to tap into (NASA's) knowledge is tremendous. And we, within oil and gas, have a unique set of skills to blend into that with the hopes being that the city becomes this incubator for technology. The potential is there."

In very large cities like Houston, charging stations typically contain an especially large number of plugs and cables, so thefts can be particularly damaging. Photo by Andrew Roberts/Unsplash

Thefts of charging cables in Houston, beyond pose yet another obstacle to appeal of EVs

bad news

Just before 2 a.m. on a chilly April night in Seattle, a Chevrolet Silverado pickup stopped at an electric vehicle charging station on the edge of a shopping center parking lot.

Two men, one with a light strapped to his head, got out. A security camera recorded them pulling out bolt cutters. One man snipped several charging cables; the other loaded them into the truck. In under 2½ minutes, they were gone.

The scene that night has become part of a troubling pattern across the country: Thieves have been targeting EV charging stations, intent on stealing the cables, which contain copper wiring. The price of copper is near a record high on global markets, which means criminals stand to collect rising sums of cash from selling the material.

The stolen cables often disable entire stations, forcing EV owners on the road to search desperately for a working charger. For the owners, the predicament can be exasperating and stressful.

Broken-down chargers have emerged as the latest obstacle for U.S. automakers in their strenuous effort to convert more Americans to EVs despite widespread public anxiety about a scarcity of charging stations. About 4 in 10 U.S. adults say they believe EVs take too long to charge or don’t know of any charging stations nearby.

If even finding a charging station doesn't necessarily mean finding functioning cables, it becomes one more reason for skeptical buyers to stick with traditional gasoline-fueled or hybrid vehicles, at least for now.

America's major automakers have made heavy financial bets that buyers will shift away from combustion engines and embrace EVs as the world faces the worsening consequences of climate change. Accordingly, the companies have poured billions into EVs.

Stellantis envisions 50% of its passenger cars being EVs by the end of 2030. Ford set a target of producing 2 million EVs per year by 2026 — about 45% of its global sales — though it has since suspended that goal. General Motors, the most ambitious of the three, has pledged to sell only EV passenger cars by the end of 2035.

Any such timetables, of course, hinge on whether the companies can convince more would-be EV buyers that a charge will always be available when they travel. The rise in cable thefts isn't likely to strengthen the automakers' case.

Two years ago, according to Electrify America, which runs the nation’s second-largest network of direct-current fast chargers, a cable might be cut perhaps every six months at one of its 968 charging stations, with 4,400 plugs nationwide. Through May this year, the figure reached 129 — four more than in all of 2023. At one Seattle station, cables were cut six times in the past year, said Anthony Lambkin, Electrify America's vice president of operations.

"We’re enabling people to get to work, to take their kids to school, get to medical appointments," Lambkin said. “So to have an entire station that’s offline is pretty impactful to our customers.”

Two other leading EV charging companies — Flo and EVgo — also have reported a rise in thefts. Charging stations in the Seattle area have been a frequent target. Sites in Nevada, California, Arizona, Colorado, Illinois, Oregon, Tennessee, Texas and Pennsylvania have been hit, too.

Stations run by Tesla, which operates the nation's largest fast-charging network, have been struck in Seattle, Oakland and Houston. So far this year, Seattle police have reported seven cases of cable thefts from charging stations, matching the number for all of 2023. Thieves hit Tesla stations four times this year compared with just once last year, the Seattle police said.

“Vandalism of public charging infrastructure in the Seattle metro area has unfortunately been increasing in frequency," EVgo said.

The company said law enforcement officials are investigating the thefts while it tries to repair inoperable stations and considers a longer-term solution.

The problem isn't confined to urban areas. In rural Sumner, Washington, south of Seattle, thieves cut cables twice at a Puget Sound Energy charging station. The company is working with police and the property owner to protect the station.

Until a month ago, police in Houston knew of no cable thefts. Then one was stolen from a charger at a gas station. The city has now recorded eight or nine such thefts, said Sgt. Robert Carson, who leads a police metal-theft unit.

In one case, thieves swiped 18 of 19 cords at a Tesla station. That day, Carson visited the station to inspect the damage. In the first five minutes that he was there, Carson said, about 10 EVs that needed charging had to be turned away.

In very large cities like Houston, charging stations typically contain an especially large number of plugs and cables, so thefts can be particularly damaging.

“They're not just taking one," Carson said. "When they're hit, they're hit pretty hard.”

Roy Manuel, an Uber driver who normally recharges his Tesla at the Houston station hit by thieves, said he fears being unable to do so because of stolen cables.

“If my battery was really low, I’d have quite an issue with operating my vehicle,” he said. “If it was so low that I couldn’t get to another charger, I might be in trouble. Might even need a tow truck.”

The charging companies say it's become clear that the thieves are after the copper that the cables contain. In late May, copper hit a record high of nearly $5.20 a pound, a result, in part, of rising demand resulting from efforts to cut carbon emissions with EVs that use more copper wiring. The price is up about 25% from a year ago, and many analysts envision further increases.

Charging companies say there isn't actually very much copper in the cables, and what copper is there is difficult to extract. Carson estimates that criminals can get $15 to $20 per cable at a scrap yard.

"They're not making a significant amount of money,” he said. “They're not going to be sailing on a yacht anywhere.”

Still, the more cables the thieves can steal, the more they can cash in. At $20 a cable, 20 stolen cables could fetch $400.

The problem for the charging companies is that it's much costlier to replace cables. In Minneapolis, where cables have been clipped at city-owned charging stations, it costs about $1,000 to replace just one cable, said Joe Laurin, project manager in the Department of Public Works.

The charging companies are trying to fight back. Electrify America is installing more security cameras. In Houston, police are visiting recycling centers to look for stolen metal.

But it's often hard for the scrap yards to determine conclusively whether metal came from a charging cable. Thieves often burn off the insulation and just sell strands of metal.

The Recycled Materials Association, which represents 1,700 members, is issuing scrap-theft alerts from law enforcement officials so that members can be on the lookout for suspects and stolen goods.

Because charging stations are often situated in remote corners of parking lots, Carson suggested that many more security cameras are needed.

In the meantime, Electrify America said Seattle police are trying to track down the thieves in the video. And Carson said the Houston police are pursuing leads in the Tesla theft.

“We'd like to get them stopped," he said, “and then let the court system do what they're supposed to do.”

___

AP Video Journalist Lekan Oyekanmi contributed to this report from Houston.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston startup advances methane tech, sets sights on growth capital

making milestones

Houston-based climatech startup Aquanta Vision achieved key milestones in 2025 for its enhanced methane-detection app and has its focus set on future funding.

Among the achievements was the completion of the National Science Foundation’s Advanced Sensing and Computation for Environmental Decision-making (ASCEND) Engine. The program, based in Colorado and Wyoming, awarded a total of $3 million in grants to support the commercialization of projects that tackle critical resilience challenges, such as water security, wildfire prediction and response, and methane emissions.

Aquanta Vision’s funding went toward commercializing its NETxTEN app, which automates leak detection to improve accuracy, speed and safety. The company estimates that methane leaks cost the U.S. energy industry billions of dollars each year, with 60 percent of leaks going undetected. Additionally, methane leaks account for around 10 percent of natural gas's contribution to climate change, according to MIT’s climate portal.

Throughout the months-long ASCEND program, Aquanta Vision moved from the final stages of testing into full commercial deployment of NETxTEN. The app can instantly identify leaks via its physics-based algorithms and raw video output of optical gas imaging cameras. It does not require companies to purchase new hardware, requires no human intervention and is universally compatible with all optical gas imaging (OGI) cameras. During over 12,000 test runs, 100 percent of leaks were detected by NETxTEN’s system, according to the company.

The app is geared toward end-users in the oil and gas industry who use OGI cameras to perform regular leak detection inspections and emissions monitoring. Aquanta Vision is in the process of acquiring new clients for the app and plans to scale commercialization between now and 2028, Babur Ozden, the company’s founder and CEO, tells Energy Capital.

“In the next 16 months, (our goal is to) gain a number of key customers as major accounts and OEM partners as distribution channels, establish benefits and stickiness of our product and generate growing, recurring revenues for ourselves and our partners,” he says.

The company also received an investment for an undisclosed amount from Marathon Petroleum Corp. late last year. The funding complemented follow-on investments from Ecosphere Ventures and Odyssey Energy Advisors.

Ozden says the funds will go toward the extension of its runway through the end of 2026. It will also help Aquanta Vision grow its team.

Ozden and Marcus Martinez, a product systems engineer, founded Aquanta Vision in 2023 and have been running it as a two-person operation. The company brought on four interns last year, but is looking to add more staff.

Ozden says the company also plans to raise a seed round in 2027 “to catapult us to a rapid growth phase in 2028-29.”

HETI discusses Houston’s energy leadership, from pathways to progress

The View From HETI

In 2024, RMI in collaboration with Mission Possible Partnership (MPP) and the Houston Energy Transition Initiative (HETI) mapped out ambitious scenarios for the region’s decarbonization journey. The report showed that with the right investments and technologies, Houston could achieve meaningful emissions reductions while continuing to power the world. That analysis painted a picture of what could be possible by 2030 and 2050.

Today, the latest HETI progress report shows Houston is not just planning anymore — the region is delivering.

Real results, right now

The numbers tell a compelling story. Since 2017, HETI’s member companies have invested more than $95 billion in low-carbon infrastructure, technologies, and R&D. That’s not a commitment for the future—that’s capital deployed, projects built, and operations transformed.

The results showed industry-wide reductions of 20% in total Scope 1 greenhouse gas emissions and a remarkable 55% decrease in methane emissions from global operations. These aren’t projections—they’re actual reductions happening across refineries, chemical plants, and production facilities throughout the Houston region.

How Houston is leading

What makes Houston’s approach work is its practical, technology-driven focus. Companies across the energy value chain are implementing solutions that work today:

  • Electrifying operations and integrating renewable power
  • Deploying advanced methane detection and elimination technologies
  • Upgrading equipment for greater efficiency
  • Capturing and storing carbon at commercial scale
  • Developing breakthrough technologies from geothermal to advanced nuclear

Take ExxonMobil’s Permian Basin electrification, Shell and Chevron’s lower-carbon Whale project, or BP’s massive Tangguh carbon capture project in Indonesia. These aren’t pilot programs—they’re multi-billion dollar investments demonstrating that decarbonization and energy production go hand in hand.

From scenarios to strategy

The RMI analysis identified three key pathways forward: enabling operational decarbonization, accelerating low-carbon technology scale-up, and creating carbon accounting mechanisms. Houston’s energy leaders have embraced all three.

The momentum is undeniable. Companies are setting ambitious 2030 and 2050 targets with clear roadmaps. New projects are reaching final investment decisions. Innovation ecosystems are flourishing. And critically, this progress is creating jobs and driving economic growth across the region.

Why this matters

Houston isn’t just managing the energy transition—it’s proving what’s possible when you combine world-class engineering expertise, integrated infrastructure, access to capital, and a commitment to both energy security and emissions reduction.

The dual challenge of delivering more energy with less emissions isn’t theoretical in Houston—it’s operational reality. Every ton of CO₂ reduced, every efficiency gain achieved, and every technology deployed demonstrates that we can meet growing global energy demand while making measurable progress on climate goals.

The path forward

The journey from last year’s scenarios to this year’s results shows something crucial: when industry, policymakers, and communities align around practical solutions, transformation accelerates.

Houston’s energy leadership isn’t about choosing between reliable energy and environmental progress, it’s about delivering both. And based on the progress we’re seeing, the momentum is only building.

———

Read the full analysis here. This article originally appeared on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

TotalEnergies to supply solar power to new Google data centers in Texas

power deal

French energy company TotalEnergies, whose U.S. headquarters are in Houston, has signed power purchase agreements to supply 1 gigawatt of solar power for Google data centers in Texas over a 15-year span.

The power will be generated by TotalEnergies’ two solar farms that are being developed in Texas. Construction on the company’s Wichita site (805 megawatt-peak, or MWp) and Mustang Creek site (195 MWp) is scheduled to start in the second quarter of this year.

Marc-Antoine Pignon, U.S. vice president for renewables at TotalEnergies, said in a press release that the 1-gigawatt deal “highlights TotalEnergies’ strategy to deliver tailored renewable energy solutions that support the decarbonization goals of digital players, particularly data centers.”

The deal comes after California-based Clearway, in which TotalEnergies holds a 50 percent stake, secured an agreement to supply 1.2 gigawatts of solar power to Google data centers in Texas and other states.

“Supporting a strong, stable, affordable grid is a top priority as we expand our infrastructure,” said Will Conkling, director of clean energy and power at Google. “Our agreement with TotalEnergies adds necessary new generation to the local system, boosting the amount of affordable and reliable power supply available to serve the entire region.”

TotalEnergies maintains a 10-gigawatt-capacity portfolio of onshore solar, wind and battery storage assets in the U.S., including 5 gigawatts in the territory served by the Electric Reliability Council of Texas (ERCOT).

Other clean energy customers of TotalEnergies include Airbus, Air Liquide, Amazon, LyondellBasell, Merck and Microsoft.