Ken Nguyen, principal technical program manager at bp, joins the Houston Innovators Podcast to discuss the company's new partnership with NASA. Photo courtesy of bp

Ken Nguyen oversees the implementation of new technologies at bp, which has its United States headquarters in Houston, and that includes software and hardtech, from cybersecurity to the digitization of the industry, which is an integral part of bp's energy transition plan.

"For bp, we do feel like as we transition as an international oil and gas company into an integrated energy company and we lean into the energy transition, the adoption of new technology is a critical part of making that viable for the planet and for the company," he says on the Houston Innovators Podcast.

According to Nguyen, principal technical program manager at bp, the company has invested its resources into exploring energy transition technologies like electric vehicle charging — including opening a fast-charging station at its Houston office — and renewable energy, including a solar farm about 10 miles northeast of Corpus Christi.

Another technology bp is keen on is digital twin technology, which can be crucial for enhancing safety for bp personnel and reducing emissions.

Nguyen says digital twin technology "allows us to be able to design and mirror scenarios with real-time variables, such as weather, off-take demands, and volatility."

Recently, in order to explore innovation within these technology verticals, bp and NASA entered into a Space Act Agreement with NASA.

"Houston has always been known as the Space City, and we're also known as the Energy Capital of the World, but there hasn't always been collaboration," Nguyen says. "The challenges that NASA is facing is very similar to the challenges that the oil industry faces — we operate in very harsh environments, safety is the most critical aspect of our operation, and now the economic business model for NASA has changed."

Nguyen explains that while both bp and NASA are navigating similar challenges and changes within their industry, they are going about it in different ways. That's where the opportunity to collaborate comes in.

The partnership, which is still new and not fully fleshed out, will look at collaborative innovation into a few focus areas to start out with, including hydrogen storage and development, AI and general intelligence, robotics, and remote operations

"Houston continues to excel — in energy production and in space exploration — but by coming together," Nguyen says, "and for us to be able to tap into (NASA's) knowledge is tremendous. And we, within oil and gas, have a unique set of skills to blend into that with the hopes being that the city becomes this incubator for technology. The potential is there."

In very large cities like Houston, charging stations typically contain an especially large number of plugs and cables, so thefts can be particularly damaging. Photo by Andrew Roberts/Unsplash

Thefts of charging cables in Houston, beyond pose yet another obstacle to appeal of EVs

bad news

Just before 2 a.m. on a chilly April night in Seattle, a Chevrolet Silverado pickup stopped at an electric vehicle charging station on the edge of a shopping center parking lot.

Two men, one with a light strapped to his head, got out. A security camera recorded them pulling out bolt cutters. One man snipped several charging cables; the other loaded them into the truck. In under 2½ minutes, they were gone.

The scene that night has become part of a troubling pattern across the country: Thieves have been targeting EV charging stations, intent on stealing the cables, which contain copper wiring. The price of copper is near a record high on global markets, which means criminals stand to collect rising sums of cash from selling the material.

The stolen cables often disable entire stations, forcing EV owners on the road to search desperately for a working charger. For the owners, the predicament can be exasperating and stressful.

Broken-down chargers have emerged as the latest obstacle for U.S. automakers in their strenuous effort to convert more Americans to EVs despite widespread public anxiety about a scarcity of charging stations. About 4 in 10 U.S. adults say they believe EVs take too long to charge or don’t know of any charging stations nearby.

If even finding a charging station doesn't necessarily mean finding functioning cables, it becomes one more reason for skeptical buyers to stick with traditional gasoline-fueled or hybrid vehicles, at least for now.

America's major automakers have made heavy financial bets that buyers will shift away from combustion engines and embrace EVs as the world faces the worsening consequences of climate change. Accordingly, the companies have poured billions into EVs.

Stellantis envisions 50% of its passenger cars being EVs by the end of 2030. Ford set a target of producing 2 million EVs per year by 2026 — about 45% of its global sales — though it has since suspended that goal. General Motors, the most ambitious of the three, has pledged to sell only EV passenger cars by the end of 2035.

Any such timetables, of course, hinge on whether the companies can convince more would-be EV buyers that a charge will always be available when they travel. The rise in cable thefts isn't likely to strengthen the automakers' case.

Two years ago, according to Electrify America, which runs the nation’s second-largest network of direct-current fast chargers, a cable might be cut perhaps every six months at one of its 968 charging stations, with 4,400 plugs nationwide. Through May this year, the figure reached 129 — four more than in all of 2023. At one Seattle station, cables were cut six times in the past year, said Anthony Lambkin, Electrify America's vice president of operations.

"We’re enabling people to get to work, to take their kids to school, get to medical appointments," Lambkin said. “So to have an entire station that’s offline is pretty impactful to our customers.”

Two other leading EV charging companies — Flo and EVgo — also have reported a rise in thefts. Charging stations in the Seattle area have been a frequent target. Sites in Nevada, California, Arizona, Colorado, Illinois, Oregon, Tennessee, Texas and Pennsylvania have been hit, too.

Stations run by Tesla, which operates the nation's largest fast-charging network, have been struck in Seattle, Oakland and Houston. So far this year, Seattle police have reported seven cases of cable thefts from charging stations, matching the number for all of 2023. Thieves hit Tesla stations four times this year compared with just once last year, the Seattle police said.

“Vandalism of public charging infrastructure in the Seattle metro area has unfortunately been increasing in frequency," EVgo said.

The company said law enforcement officials are investigating the thefts while it tries to repair inoperable stations and considers a longer-term solution.

The problem isn't confined to urban areas. In rural Sumner, Washington, south of Seattle, thieves cut cables twice at a Puget Sound Energy charging station. The company is working with police and the property owner to protect the station.

Until a month ago, police in Houston knew of no cable thefts. Then one was stolen from a charger at a gas station. The city has now recorded eight or nine such thefts, said Sgt. Robert Carson, who leads a police metal-theft unit.

In one case, thieves swiped 18 of 19 cords at a Tesla station. That day, Carson visited the station to inspect the damage. In the first five minutes that he was there, Carson said, about 10 EVs that needed charging had to be turned away.

In very large cities like Houston, charging stations typically contain an especially large number of plugs and cables, so thefts can be particularly damaging.

“They're not just taking one," Carson said. "When they're hit, they're hit pretty hard.”

Roy Manuel, an Uber driver who normally recharges his Tesla at the Houston station hit by thieves, said he fears being unable to do so because of stolen cables.

“If my battery was really low, I’d have quite an issue with operating my vehicle,” he said. “If it was so low that I couldn’t get to another charger, I might be in trouble. Might even need a tow truck.”

The charging companies say it's become clear that the thieves are after the copper that the cables contain. In late May, copper hit a record high of nearly $5.20 a pound, a result, in part, of rising demand resulting from efforts to cut carbon emissions with EVs that use more copper wiring. The price is up about 25% from a year ago, and many analysts envision further increases.

Charging companies say there isn't actually very much copper in the cables, and what copper is there is difficult to extract. Carson estimates that criminals can get $15 to $20 per cable at a scrap yard.

"They're not making a significant amount of money,” he said. “They're not going to be sailing on a yacht anywhere.”

Still, the more cables the thieves can steal, the more they can cash in. At $20 a cable, 20 stolen cables could fetch $400.

The problem for the charging companies is that it's much costlier to replace cables. In Minneapolis, where cables have been clipped at city-owned charging stations, it costs about $1,000 to replace just one cable, said Joe Laurin, project manager in the Department of Public Works.

The charging companies are trying to fight back. Electrify America is installing more security cameras. In Houston, police are visiting recycling centers to look for stolen metal.

But it's often hard for the scrap yards to determine conclusively whether metal came from a charging cable. Thieves often burn off the insulation and just sell strands of metal.

The Recycled Materials Association, which represents 1,700 members, is issuing scrap-theft alerts from law enforcement officials so that members can be on the lookout for suspects and stolen goods.

Because charging stations are often situated in remote corners of parking lots, Carson suggested that many more security cameras are needed.

In the meantime, Electrify America said Seattle police are trying to track down the thieves in the video. And Carson said the Houston police are pursuing leads in the Tesla theft.

“We'd like to get them stopped," he said, “and then let the court system do what they're supposed to do.”

___

AP Video Journalist Lekan Oyekanmi contributed to this report from Houston.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH's $44 million mass timber building slashed energy use in first year

building up

The University of Houston recently completed assessments on year one of the first mass timber project on campus, and the results show it has had a major impact.

Known as the Retail, Auxiliary, and Dining Center, or RAD Center, the $44 million building showed an 84 percent reduction in predicted energy use intensity, a measure of how much energy a building uses relative to its size, compared to similar buildings. Its Global Warming Potential rating, a ratio determined by the Intergovernmental Panel on Climate Change, shows a 39 percent reduction compared to the benchmark for other buildings of its type.

In comparison to similar structures, the RAD Center saved the equivalent of taking 472 gasoline-powered cars driven for one year off the road, according to architecture firm Perkins & Will.

The RAD Center was created in alignment with the AIA 2030 Commitment to carbon-neutral buildings, designed by Perkins & Will and constructed by Houston-based general contractor Turner Construction.

Perkins & Will’s work reduced the building's carbon footprint by incorporating lighter mass timber structural systems, which allowed the RAD Center to reuse the foundation, columns and beams of the building it replaced. Reused elements account for 45 percent of the RAD Center’s total mass, according to Perkins & Will.

Mass timber is considered a sustainable alternative to steel and concrete construction. The RAD Center, a 41,000-square-foot development, replaced the once popular Satellite, which was a food, retail and hangout center for students on UH’s campus near the Science & Research Building 2 and the Jack J. Valenti School of Communication.

The RAD Center uses more than a million pounds of timber, which can store over 650 metric tons of CO2. Aesthetically, the building complements the surrounding campus woodlands and offers students a view both inside and out.

“Spaces are designed to create a sense of serenity and calm in an ecologically-minded environment,” Diego Rozo, a senior project manager and associate principal at Perkins & Will, said in a news release. “They were conceptually inspired by the notion of ‘unleashing the senses’ – the design celebrating different sights, sounds, smells and tastes alongside the tactile nature of the timber.”

In addition to its mass timber design, the building was also part of an Energy Use Intensity (EUI) reduction effort. It features high-performance insulation and barriers, natural light to illuminate a building's interior, efficient indoor lighting fixtures, and optimized equipment, including HVAC systems.

The RAD Center officially opened Phase I in Spring 2024. The third and final phase of construction is scheduled for this summer, with a planned opening set for the fall.

Experts on U.S. energy infrastructure, sustainability, and the future of data

Guest column

Digital infrastructure is the dominant theme in energy and infrastructure, real estate and technology markets.

Data, the byproduct and primary value generated by digital infrastructure, is referred to as “the fifth utility,” along with water, gas, electricity and telecommunications. Data is created, aggregated, stored, transmitted, shared, traded and sold. Data requires data centers. Data centers require energy. The United States is home to approximately 40% of the world's data centers. The U.S. is set to lead the world in digital infrastructure advancement and has an opportunity to lead on energy for a very long time.

Data centers consume vast amounts of electricity due to their computational and cooling requirements. According to the United States Department of Energy, data centers consume “10 to 50 times the energy per floor space of a typical commercial office building.” Lawrence Berkeley National Laboratory issued a report in December 2024 stating that U.S. data center energy use reached 176 TWh by 2023, “representing 4.4% of total U.S. electricity consumption.” This percentage will increase significantly with near-term investment into high performance computing (HPC) and artificial intelligence (AI). The markets recognize the need for digital infrastructure build-out and, developers, engineers, investors and asset owners are responding at an incredible clip.

However, the energy demands required to meet this digital load growth pose significant challenges to the U.S. power grid. Reliability and cost-efficiency have been, and will continue to be, two non-negotiable priorities of the legal, regulatory and quasi-regulatory regime overlaying the U.S. power grid.

Maintaining and improving reliability requires physical solutions. The grid must be perfectly balanced, with neither too little nor too much electricity at any given time. Specifically, new-build, physical power generation and transmission (a topic worthy of another article) projects must be built. To be sure, innovative financial products such as virtual power purchase agreements (VPPAs), hedges, environmental attributes, and other offtake strategies have been, and will continue to be, critical to growing the U.S. renewable energy markets and facilitating the energy transition, but the U.S. electrical grid needs to generate and move significantly more electrons to support the digital infrastructure transformation.

But there is now a third permanent priority: sustainability. New power generation over the next decade will include a mix of solar (large and small scale, offsite and onsite), wind and natural gas resources, with existing nuclear power, hydro, biomass, and geothermal remaining important in their respective regions.

Solar, in particular, will grow as a percentage of U.S grid generation. The Solar Energy Industries Association (SEIA) reported that solar added 50 gigawatts of new capacity to the U.S. grid in 2024, “the largest single year of new capacity added to the grid by an energy technology in over two decades.” Solar is leading, as it can be flexibly sized and sited.

Under-utilized technology such as carbon capture, utilization and storage (CCUS) will become more prominent. Hydrogen may be a potential game-changer in the medium-to-long-term. Further, a nuclear power renaissance (conventional and small modular reactor (SMR) technologies) appears to be real, with recent commitments from some of the largest companies in the world, led by technology companies. Nuclear is poised to be a part of a “net-zero” future in the United States, also in the medium-to-long term.

The transition from fossil fuels to zero carbon renewable energy is well on its way – this is undeniable – and will continue, regardless of U.S. political and market cycles. Along with reliability and cost efficiency, sustainability has become a permanent third leg of the U.S. power grid stool.

Sustainability is now non-negotiable. Corporate renewable and low carbon energy procurement is strong. State renewable portfolio standards (RPS) and clean energy standards (CES) have established aggressive goals. Domestic manufacturing of the equipment deployed in the U.S. is growing meaningfully and in politically diverse regions of the country. Solar, wind and batteries are increasing less expensive. But, perhaps more importantly, the grid needs as much renewable and low carbon power generation as possible - not in lieu of gas generation, but as an increasingly growing pairing with gas and other technologies. This is not an “R” or “D” issue (as we say in Washington), and it's not an “either, or” issue, it's good business and a physical necessity.

As a result, solar, wind and battery storage deployment, in particular, will continue to accelerate in the U.S. These clean technologies will inevitably become more efficient as the buildout in the U.S. increases, investments continue and technology advances.

At some point in the future (it won’t be in the 2020s, it could be in the 2030s, but, more realistically, in the 2040s), the U.S. will have achieved the remarkable – a truly modern (if not entirely overhauled) grid dependent largely on a mix of zero and low carbon power generation and storage technology. And when this happens, it will have been due in large part to the clean technology deployment and advances over the next 10 to 15 years resulting from the current digital infrastructure boom.

---

Hans Dyke and Gabbie Hindera are lawyers at Bracewell. Dyke's experience includes transactions in the electric power and oil and gas midstream space, as well as transactions involving energy intensive industries such as data storage. Hindera focuses on mergers and acquisitions, joint ventures, and public and private capital market offerings.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

new findings

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.