Milestone Carbon has leased more that 22,000 acres of land in the Permian Basin for the permanent geologic sequestration of CO2. Photo via milestone-es.com

Houston-based Milestone Environmental Services announced this month that it has been acquired by affiliates of SK Capital Partners for an undisclosed amount.

The New York-based private investment firm, which specializes in the materials, ingredients, and life sciences sectors, now has a controlling stake of Milestone, which will continue to be led by its president and CEO Gabriel Rio.

Rio founded Milestone in 2014. The company is one of the largest independent providers of waste management services for the U.S. energy and industrial sectors. It focuses on permanent carbon sequestration services through its proprietary slurry injection process, which stores hydrocarbon waste over a mile underground.

The company's subsidiary, Milestone Carbon, is developing injection sites that permanently and securely sequester CO2. Earlier this month, Milestone Carbon announced that it has leased more that 22,000 acres of land in the Permian Basin for the permanent geologic sequestration of CO2 as part of the "sequestration hub" it is developing.

According to the company, once operating, the hub will help reduce emission related to natural gas processing, electricity generation and other industries. It's slated to be one of the first sequestration hubs in the basin.

"We founded Milestone to boldly advance sustainability in the energy industry and beyond," Rios says in a statement. "Our offerings enable companies to reduce their carbon footprint and enhance their ability to meet sustainability goals. Permanent, safe sequestration of carbon is an essential part of combating climate change, and Milestone has the strategy and capabilities to play a leading role in delivering solutions to multiple industries.”

According to a statement, Milestone has sequestered more than 2 million tons of CO2e through its injection process. The company has stated that it believes its sequestration hub will help attract new industries and technologies, hydrogen, low-carbon ammonia, and low-carbon power, to West Texas.

"We are highly impressed with the market-leading, sustainability-driven business that Gabriel and the Milestone management team have built," Jack Norris, a managing director of SK Capital, said in a statement. "It is well-positioned to further grow its core business in difficult-to-abate industries as environmental regulations become more stringent and Milestone’s customers are increasingly focused on meeting ambitious decarbonization targets. We are excited to partner with management to capture this growth opportunity as well as support its further progress towards becoming a leader in CCS and other related markets.”

Earlier this summer, Houston-based Occidental also got in on a carbon capture acquisition. Occidental says its all-cash acquisition of Carbon Engineering is set to close by the end of 2023. The Canada-based company focuses on direct carbon capture (DAC), which vacuums about 50 percent to 60 percent of the carbon dioxide from the air that passes through the system’s fans.

Oxy was granted $600 million from the U.S. Department of Energy to develop South Texas Direct Air Capture (DAC) Hub earlier this year. It’ll be located on about 106,000 leased acres within a Kleberg County site at the iconic King Ranch. The hub will comprise 30 individual DAC projects.

The U.S. Department of Energy also recently invested more than $10 million in funding for four DAC projects with Houston ties.

Occidental says its all-cash acquisition of Canada-based Carbon Engineering is set to close by the end of 2023. Photo via carbonengineering.com

Oxy acquires carbon capture co. in $1.1B deal

betting on dac

In yet another bet on direct carbon capture (DAC), Houston-based Occidental has agreed to purchase a DAC technology company for $1.1 billion.

Occidental says its all-cash acquisition of Canada-based Carbon Engineering is set to close by the end of 2023. Carbon Engineering was founded in 2009.

Under the deal, Carbon Engineering would become a wholly owned subsidiary of Oxy Low Carbon Ventures, the investment arm of Occidental. Carbon Engineering employees will work with teams at Occidental and its low-carbon subsidiary, 1PointFive, on DAC technology. The company’s R&D and innovation units will remain in Squamish, British Columbia.

Occidental has been a key DAC partner of Carbon Engineering since 2019.

“We look forward to continuing our collaboration with the Carbon Engineering team, which has been a leader in pioneering and advancing DAC technology,” Vicki Hollub, president and CEO of Occidental, says in an August 15 news release. “Together, Occidental and Carbon Engineering can accelerate plans to globally deploy DAC technology at a climate-relevant scale and make DAC the preferred solution for businesses seeking to remove their hard-to-abate emissions.”

Billionaire Warren Buffett’s Berkshire Hathaway conglomerate owns about one-fourth of the shares of publicly traded Occidental.

In conjunction with Carbon Engineering, Occidental’s 1PointFive is building Stratos, the world’s largest DAC plant. The Ector County facility, scheduled to begin operating in mid-2025, is projected to extract up to 500,000 metric tons of carbon dioxide from the air each year. It’s anticipated that Stratos will employ more than 1,000 people during construction and up to 75 people once the plant is up and running.

Occidental and Carbon Engineering are adapting Stratos’ engineering and design features for a DAC plant to be built on a site at South Texas’ King Ranch. The South Texas DAC Hub, which is on track to create about 2,500 jobs, recently received a roughly $600 million grant from the U.S. Department of Energy (DOE).

1PointFive plans to open as many as 135 DAC facilities around the world by 2035, with the capacity to capture 100 million metric tons of carbon dioxide (CO2) per year.

DAC technology pulls carbon dioxide emissions from the atmosphere at any location and permanently stores the CO2 or uses it for other purposes. By contrast, carbon capture sucks carbon dioxide from the air near where emissions are generated and then permanently stores the CO2 or uses it for other purposes.

A DAC system vacuums about 50 percent to 60 percent of the carbon dioxide from the air that passes through the system’s fans.

DAC “is shaping up to be a key component of meeting net-zero emissions goals in the United States,” according to the National Renewable Energy Laboratory.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

SLB partners with renewables company to develop next-gen geothermal systems

geothermal partnership

Houston-based energy technology company SLB and renewable energy company Ormat Technologies have teamed up to fast-track the development and commercialization of advanced geothermal technology.

Their initiative focuses on enhanced geothermal systems (EGS). These systems represent “the next generation of geothermal technology, meant to unlock geothermal energy in regions beyond where conventional geothermal resources exist,” the companies said in a news release.

After co-developing EGS technology, the companies will test it at an existing Ormat facility. Following the pilot project, SLB and Nevada-based Ormat will pursue large-scale EGS commercialization for utilities, data center operators and other customers. Ormat owns, operates, designs, makes and sells geothermal and recovered energy generation (REG) power plants.

“There is an urgent need to meet the growing demand for energy driven by AI and other factors. This requires accelerating the path to clean and reliable energy,” Gavin Rennick, president of new energy at SLB, said in a news release.

Traditional geothermal systems rely on natural hot water or steam reservoirs underground, limiting the use of geothermal technology. EGS projects are designed to create thermal reservoirs in naturally hot rock through which water can circulate, transferring the energy back to the surface for power generation and enabling broader availability of geothermal energy.

The U.S. Department of Energy estimates next-generation geothermal, such as EGS, could provide 90 gigawatts of electricity by 2050.

Baker Hughes to provide equipment for massive low-carbon ammonia plant

coming soon

Houston-based energy technology company Baker Hughes has been tapped to supply equipment for what will be the world’s largest low-carbon ammonia plant.

French technology and engineering company Technip Energies will buy a steam turbine generator and compression equipment from Baker Hughes for Blue Point Number One, a $4 billion low-carbon ammonia plant being developed in Louisiana by a joint venture comprising CF Industries, JERA and Mitsui & Co. Technip was awarded a contract worth at least $1.1 billion to provide services for the Blue Point project.

CF, a producer of ammonia and nitrogen, owns a 40 percent stake in the joint venture, with JERA, Japan’s largest power generator, at 35 percent and Mitsui, a Japanese industrial conglomerate, at 25 percent.

The Blue Point Number One project, to be located at CF’s Blue Point ammonia production facility, will be capable of producing about 1.4 million metric tons of low-carbon ammonia per year and permanently storing up to 2.3 million metric tons of carbon dioxide.

Construction of the ammonia-making facility is expected to start in 2026, with production of low-carbon ammonia set to get underway in 2029.

“Ammonia, as a lower-carbon energy source, is poised to play a pivotal role in enabling and accelerating global sustainable energy development,” Alessandro Bresciani, senior vice president of energy equipment at Baker Hughes, said in a news release.

Earlier this year, British engineering and industrial gas company Linde signed a long-term contract to supply industrial gases for Blue Point Number One. Linde Engineering Americas is based in Houston.

Houston expert asks: Is the Texas grid ready for the future?

Guets Column

Texas has spent the past five years racing to strengthen its electric grid after Winter Storm Uri exposed just how vulnerable it was. Billions have gone into new transmission lines, grid hardening, and a surge of renewables and batteries. Those moves have made a difference, we haven’t seen another systemwide blackout like Uri, but the question now isn’t what’s been done, it’s whether Texas can keep up with what’s coming.

Massive data centers, electric vehicles, and industrial projects are driving electricity demand to unprecedented levels. NERC recently boosted its 10-year load forecast for Texas by more than 60%. McKinsey projects that U.S. electricity demand will rise roughly 40% by 2030 and double by 2050, with data centers alone accounting for as much as 11-12% of total U.S. electricity demand by 2030, up from about 4% today. Texas, already the top destination for new data centers, will feel that surge at a greater scale.

While the challenges ahead are massive and there will undoubtedly be bumps in the road (some probably big), we have an engaged Texas legislature, capable regulatory bodies, active non-profits, pragmatic industry groups, and the best energy minds in the world working together to make a market-based system work. I am optimistic Texas will find a way.

Why Texas Faces a Unique Grid Challenge

About 90% of Texas is served by a single, independent grid operated by ERCOT, rather than being connected to the two large interstate grids that cover the rest of the country. This structure allows ERCOT to avoid federal oversight of its market design, although it still must comply with FERC reliability standards. The trade-off is limited access to power from neighboring states during emergencies, leaving Texas to rely almost entirely on in-state generation and reserves when extreme weather hits.

ERCOT’s market design is also different. It’s an “energy-only” market, meaning generators are paid for electricity sold, not for keeping capacity available. While that lowers prices in normal times, it also makes it harder to finance backup, dispatchable generation like natural gas and batteries needed when the wind isn’t blowing or the sun isn’t shining.

The Risks Mounting

In Texas, solar and wind power supply a significant percentage of electricity to the grid. As Julie Cohn, a nonresident scholar at the Baker Institute, explains, these inverter‑based resources “connect through power electronics, which means they don’t provide the same physical signals to the grid that traditional generators do.” The Odessa incidents, where solar farms tripped offline during minor grid disturbances, showed how fragile parts of this evolving grid can be. “Fortunately, it didn’t result in customer outages, and it was a clear signal that Texas has the opportunity to lead in solving this challenge.”

Extreme weather adds more pressure while the grid is trying to adapt to a surge in use. CES research manager Miaomiao Rimmer notes: “Hurricane frequencies haven't increased, but infrastructure and population in their paths have expanded dramatically. The same hurricane that hit 70 years ago would cause far more damage today because there’s simply more in harm’s way.”

Medlock: “Texas has made significant strides in the last 5 years, but there’s more work to be done.”

Ken Medlock, Senior Director of the Center for Energy Studies at Rice University’s Baker Institute, argues that Texas’s problem isn’t a lack of solutions; it’s how quickly those solutions are implemented. He stresses that during the January 2024 cold snap, natural gas kept the grid stable, proving that “any system configuration with sufficient, dispatchable generation capacity would have kept the lights on.” Yet ERCOT load has exceeded dispatchable capacity with growing frequency since 2018, raising the stakes for future reliability.

Ken notes: “ERCOT has a substantial portfolio of options, including investment in dispatchable generation, storage near industrial users, transmission expansion, and siting generation closer to load centers. But allowing structural risks to reliability that can be avoided at a reasonable cost is unacceptable. Appropriate market design and sufficient regulatory oversight are critical.” He emphasizes that reliability must be explicitly priced into ERCOT’s market so backup resources can be built and maintained profitably. These resources, whether natural gas, nuclear, or batteries, cannot remain afterthoughts if Texas wants a stable grid.

Building a More Reliable Grid

For Texas to keep pace with rising demand and withstand severe weather, it must act decisively on multiple fronts, strengthening its grid while building for long-term growth.

  • Coordinated Planning: Align regulators, utilities, and market players to plan decades ahead, not just for next summer.
  • Balancing Clean and Reliable Power: Match renewable growth with flexible, dispatchable generation that can deliver power on demand.
  • Fixing Local Weak Spots: Harden distribution networks, where most outages occur, rather than focusing only on large-scale generation.
  • Market Reform and Technology Investment: Price reliability fairly and support R&D to make renewables strengthen, not destabilize, the grid.

In Conclusion

While Texas has undeniably improved its grid since Winter Storm Uri, surging electricity demand and intensifying weather mean the work is far from over. Unlike other states, ERCOT can’t rely on its neighbors for backup power, and its market structure makes new dispatchable resources harder to build. Decisive leadership, investment, and reforms will be needed to ensure Texas can keep the lights on.

It probably won’t be a smooth journey, but my sense is that Texas will solve these problems and do something spectacular. It will deliver more power with fewer emissions, faster than skeptics believe, and surprise us all.

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.