For the first time, Texas's ERCOT grid will be connected to other states' grids thanks to funding from the Department of Energy. Photo via Getty Images

Thanks to recently announced funding, the power grid for the territory served by the Electric Reliability Council of Texas (ERCOT) will be connected to grids in other states.

Officials hope building a 320-mile transmission line that connects the ERCOT electric grid to electric grids in the Southeast will prevent power outages like the massive blackout that occurred in 2022 when a winter storm blasted Texas.

San Francisco-based Pattern Energy says its Southern Spirit project will cost more than $2.6 billion. Full-scale construction is supposed to get underway in 2028, and the project is set to go online in 2031.

The U.S. Department of Energy recently approved up to $360 million for the transmission project. The transmission line will stretch from Texas’ border with Louisiana to Mississippi. It’ll supply about 3,000 megawatts of electricity in either direction. That’s enough power for about 750,000 residential customers during ERCOT’s peak hours.

ERCOT’s more than 54,100 miles of transmission lines supply power to about 90 percent of Texans.

“The U.S. transmission network is the backbone of our nation’s electricity system. Though our grid has served U.S. energy needs for more than a century, our country’s needs are changing,” David Turk, under secretary at the Department of Energy, says in a news release.

“DOE’s approach to deploying near-term solutions and developing long-term planning tools will ensure our electric grid is more interconnected and resilient than ever before,” Turk adds, “while also supporting greater electricity demand.”

The other three projects that recently received funding from the DOE include:

  • Aroostook Renewable Project, which will construct a new substation in Haynesville, Maine, and a 111-mile transmission line connecting to a substation in Pittsfield, Maine.
  • Cimarron Link, a 400-mile HVDC transmission line from Texas County, Oklahoma to Tulsa, Oklahoma
  • Southline, which will construct a 108-mile transmission line between Hidalgo County, New Mexico, and Las Cruces, New Mexico. The DOE previously supported a 175-mile line from Hidalgo County, New Mexico, to Pima County, Arizona, in Southline Phase 1 on the first round of the Transmission Facilitation Program.

This month's funding completes the $2.5 billion in awards from the Transmission Facilitation Program which is administered through the Building a Better Grid Initiative that launched in January 2022. Its mission has been to develop nationally significant transmission lines, increase resilience by connecting regions of the country and improve access to clean energy sources, according to the DOE.

Earlier this year, ERCOT, which manages 90 percent of Texas’ power supply, forecasted a major spike in demand for electricity over the next five to seven years

The Meta and Sage Geosystems project is reportedly the first next-generation geothermal project located to the east of the Rocky Mountains. Rendering by Sage Geosystems and Meta

Meta taps Houston geothermal co. to power data center growth with clean energy

big tech

A Houston company has signed a new agreement with Meta Platforms Inc. — Facebook's parent company — to power the tech giant's data center growth.

Houston-based Sage Geosystems agreed to deliver up to 150 megawatts of new geothermal baseload power to Meta. The companies made the announcement this week at the United States Department Energy’s Catalyzing Next Generation Geothermal Development Workshop.

The deal is significant because it's the first next-generation geothermal project located to the east of the Rocky Mountains, the companies report in a news release.

“This announcement is the perfect example of how the public and private sector can work together to make the clean energy transition a reality,” Cindy Taff, CEO of Sage Geosystems, says in the release. “We are thrilled to be at the forefront of the next generation of geothermal technology and applaud the DOE for supporting the commercialization of innovation solutions.

"As energy demand continues to grow, the need for reliable, resilient and sustainable power is paramount and our partnership with Meta underscores the critical need for innovative and sustainable energy solutions like ours,” she continues.

The project's first phase will aim to be operating in 2027. The plans reflect how geothermal is being recognized as a growing carbon-free energy source in the country, and how Meta is committed to clean energy initiatives.

“The U.S. has seen unprecedented growth in demand for energy as our economy grows, the manufacturing sector booms thanks to the Biden-Harris Administration’s Investing in America agenda, and new industries like AI expand,” U.S. Energy Deputy Secretary David Turk says. “The Administration views this increased demand as a huge opportunity to add more clean, firm power to the grid and geothermal energy is a game-changer as we work to grow our clean power supply.”

Sage's technology — called Geopressured Geothermal System — works deep in the earth to develop energy storage and geothermal baseload power.

“Meta thanks the Department of Energy’s leadership on promoting and supporting the exploration of new energy sources like geothermal," Urvi Parekh, head of renewable energy at Meta, says. "That leadership supports Meta’s goal to enable the addition of reliable, affordable, and carbon-free power to the grid with this geothermal energy deal. We are excited to partner with such an innovative company like Sage Geosystems that is a proven leader in geothermal development on this project and beyond.”

Sage recently teamed up with a utility provider for an energy storage facility in the San Antonio metro area to build its three-megawatt EarthStore facility.

The company is also working on an exploratory geothermal project for the Army’s Fort Bliss post in Texas, which is the third U.S. Department of Defense geothermal initiative in the Lone Star State.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

NRG makes latest partnership to grow virtual power plant

VPP partners

Houston-based NRG Energy recently announced a new long-term partnership with San Francisco-based Sunrun that aims to meet Texas’ surging energy demands and accelerate the adoption of home battery storage in Texas. The partnership also aligns with NRG’s goal of developing a 1-gigawatt virtual power plant by connecting thousands of decentralized energy sources by 2035.

Through the partnership, the companies will offer Texas residents home energy solutions that pair Sunrun’s solar-plus-storage systems with optimized rate plans and smart battery programming through Reliant, NRG’s retail electricity provider. As new customers enroll, their stored energy can be aggregated and dispatched to the ERCOT grid, according to a news release.

Additionally, Sunrun and NRG will work to create customer plans that aggregate and dispatch distributed power and provide electricity to Texas’ grid during peak periods.

“Texas is growing fast, and our electricity supply must keep pace,” Brad Bentley, executive vice president and president of NRG Consumer, said in the release. “By teaming up with Sunrun, we’re unlocking a new source of dispatchable, flexible energy while giving customers the opportunity to unlock value from their homes and contribute to a more resilient grid

Participating Reliant customers will be paid for sharing their stored solar energy through the partnership. Sunrun will be compensated for aggregating the stored capacity.

“This partnership demonstrates the scale and strength of Sunrun’s storage and solar distributed power plant assets,” Sunrun CEO Mary Powell added in the release. “We are delivering critical energy infrastructure that gives Texas families affordable, resilient power and builds a reliable, flexible power plant for the grid.”

In December, Reliant also teamed up with San Francisco tech company GoodLeap to bolster residential battery participation and accelerate the growth of NRG’s virtual power plant network in Texas.

In 2024, NRG partnered with California-based Renew Home to distribute hundreds of thousands of VPP-enabled smart thermostats by 2035 to help households manage and lower their energy costs. At the time, the company reported that its 1-gigawatt VPP would be able to provide energy to 200,000 homes during peak demand.

10+ exciting energy breakthroughs made by Houston teams in 2025

Year In Review

Editor's note: As 2025 comes to a close, we're revisiting the biggest headlines and major milestones of the energy sector this year. Here are the most exciting scientific breakthroughs made by Houstonians this year that are poised to shape the future of energy:

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

Rice University researchers have developed a new method for removing PFAS from water that works 100 times faster than traditional filters. Photo via Rice University.

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water. The Rice-led study centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

UH researchers make breakthrough in cutting carbon capture costs

UH carbon capture cost cutting

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants. Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team first introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process.The second breakthrough displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge.

Houston team’s discovery brings solid-state batteries closer to EV use

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape. Their work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

Houston researchers make breakthrough on electricity-generating bacteria

A team of Rice researchers, including Caroline Ajo-Franklin and Biki Bapi Kundu, has uncovered how certain bacteria breathe by generating electricity. Photo by Jeff Fitlow/Rice University.

Research from Rice University that merges biology with electrochemistry has uncovered new findings on how some bacteria generate electricity. Research showed how some bacteria use compounds called naphthoquinones, rather than oxygen, to transfer electrons to external surfaces in a process known as extracellular respiration. In other words, the bacteria are exhale electricity as they breathe. This process has been observed by scientists for years, but the Rice team's deeper understanding of its mechanism is a major breakthrough, with implications for the clean energy and industrial biotechnology sectors, according to the university.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A study from researchers at Rice University could lead to future advances in superconductors with the potential to transform energy use. The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials. The materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance. The Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. This material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

Houston researchers make headway on developing low-cost sodium-ion batteries

Houston researchers make headway on developing low-cost sodium-ion batteries

Rice's Atin Pramanik and a team in Pulickel Ajayan's lab shared new findings that offer a sustainable alternative to lithium batteries by enhancing sodium and potassium ion storage. Photo by Jeff Fitlow/Courtesy Rice University

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries. The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

Houston scientists develop 'recharge-to-recycle' reactor for lithium-ion batteries

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock. The findings demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing. The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs.

Houston researchers develop strong biomaterial that could replace plastic

A team led by M.A.S.R. Saadi and Muhammad Maksud Rahman has developed a biomaterial that they hope could be used for the “next disposable water bottle." Photo courtesy Rice University.

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic. The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties.” Ultimately, the scientists hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth. Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

Houston researchers reach 'surprising' revelation in materials recycling efforts

A team led by Matteo Pasquali, director of Rice’s Carbon Hub, has unveiled how carbon nanotube fibers can be a sustainable alternative to materials like steel, copper and aluminum. Photo by Jeff Fitlow/ Courtesy Rice University

Researchers at Rice University have demonstrated how carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties. The discovery shows that CNT fibers could be used as a sustainable alternative to traditional materials like metals, polymers and the larger, harder-to-recycle carbon fibers, which the team hopes can pave the way for more sustainable and efficient recycling efforts.