Cruise pauses in Houston and beyond — and more things to know this week. Photo via Cruise/Facebook

Editor's note: It's a new week — start it strong with three quick things to know in Houston's energy transition ecosystem: events not to miss, robotaxis take a break, and more.

Events this week

Don't miss these two events.

  • November 7-8: Hydrogen North America 2024 will host the hydrogen sector's thought leaders for a two-day event. Learn more.
  • November 8 — The Houston Innovation Awards will honor the city's startups, entrepreneurs, and ecosystem, including energy tech innovators. Learn more.

Cruise hits the brakes

Cruise launched in Houston in October. Photo courtesy of Cruise

Self-driving taxi service, Cruise, which recently launched in Houston, has put it in park for the time being, as TechCrunch reported last month.

The company's California permit was rescinded, and Cruise announced a national pause on its service in a statement.

"The most important thing for us right now is to take steps to rebuild public trust. Part of this involves taking a hard look inwards and at how we do work at Cruise, even if it means doing things that are uncomfortable or difficult," reads the statement. "In that spirit, we have decided to proactively pause driverless operations across all of our fleets while we take time to examine our processes, systems, and tools and reflect on how we can better operate in a way that will earn public trust. This is not related to any new on-road incidents, and our supervised AV operations will continue."

Meet LYB — and its latest sustainability deal

LyondellBasell has rebranded as LYB. Photo via lyondellbasell.com

LyondellBasell has rebranded as LYB, revealing a new logo, tagline, and visual identity.

“With our new strategy firmly in place, our employees are adopting new ways of working to generate innovative, value-enhancing solutions to support our goals,” Peter Vanacker, LYB's CEO, says in the release.

The Dutch company, whose U.S. headquarters is in Houston, also recently announced that it has purchased a 25 percent stake in a joint venture that seeks to accelerate advancements in plastic recycling.

Cruise is now cruising some Houston streets. The self-driving car service has launched with $5 flat-rate rides. Photo courtesy of Cruise

Fleet of self-driving electric vehicles rolls out to transport Houstonians

automated EV

For the first time, Houstonians can hail an autonomous electric vehicle to get from point A to point B, thanks to a tech company's latest market roll out.

San Francisco-based Cruise, which has launched in its hometown, Phoenix, and Austin over the past year and a half, previously announced Houston and Dallas as the company's next stops. Dallas, where Cruise is currently undergoing testing, will roll out its service by the end of the year.

As of October 12, Houstonians in the Downtown, Midtown, East Downtown, Montrose, Hyde Park, and River Oaks neighborhoods can hail a ride from an autonomous electric vehicle seven days a week between the hours of 9 pm to 6 am.

"We believe that everyone has a right to safer, more accessible and more affordable transportation, and we remain focused on cities first because that’s where our mission will have the greatest impact. Houston follows that city-first strategy with its densely traversed downtown, propensity for ridehail, and vibrant cultural center," Sola Lawal, Cruise's Houston manager, tells InnovationMap. "Cruise also shares in Houston’s Vision Zero mission to end traffic deaths and serious injuries by 2030 and we’re excited to address the transportation needs of Houston communities."

Although today marks the launch to the public, Cruise's employees and their friends and family have been testing out the service since August.

"People love this shift from working for your car as the driver, to the car working for you and the time this gives people back in their days," he explains. "A common reaction from first time riders starts with people being shocked and awed for the first two minutes then the ride becomes so normal that you forget you're in a driverless car."

Founded in 2013 by CEO, CTO, and President Kyle Vogt and Chief Product Officer Dan Kan, Cruise vehicles have self-driven over 5 million miles — 1 million of those miles were cruised on Texas streets. The company's fleet includes 400 electric vehicles powered by renewable energy.

Cruise's plan for Houston is to launch and grow from there, including launching larger passenger vehicles, the Origin fleet, for bigger groups of people.

"We always start small and methodically expand from there. For us it’s all about safety and how we expand in partnership with communities, so we let that be our guide for expansion vs arbitrary timelines," Lawal says. "Our goal is to continue to expand as quickly and safely as possible so we can get folks to the Rodeo when it starts and back home, anywhere in Houston, when it ends. You can expect expanded map areas, increased supply of AVs, and expanded hours until we are 24/7 across Houston."

Cruise has raised $10 billion in capital commitments from investors, including General Motors, Honda, Microsoft, T. Rowe Price, Walmart, and others. Additionally, the tech company has also a $5 billion credit line with GM Financial, giving it the financial support needed to scale. Strategically aligned with General Motors and Honda, Cruise has fully integrated manufacturing at scale.

Cruise, which touts a pricing model competitive to existing rideshares, is launching with $5 flat-rate rides for passengers.

"Houstonians who ride with us have the chance to be part of history in the making," Lawal tells Houston's to-be Cruise riders. "The industry has made incredible progress in the last two years but we are still in the early days of what’s to come as driverless ridehail becomes a reality for more people.

"We are proud of the service we’ve built so far and the safety record we have to show for it, but will always continue to improve. We're excited to launch with the community of Houston and we simply ask that you give it a try," he continues. "And when you do please give us feedback, we’d love to hear about your experience."

------

This article originally ran on InnovationMap.


Soon, you'll be able to cruise to your destination without a driver in Houston. Photo via Cruise/Facebook

Self-driving rideshare company cruises its robotaxies into Houston

LOOK MA, NO DRIVER

A new driverless ridehail service is coming to Houston: Cruise, the all-electric, driverless car company backed by GM, is expanding in Texas with launches in both Dallas and the Bayou City.

This follows an initial launch in Austin in 2022, their first city in Texas.

Cruise builds and operates driverless vehicles that you can call via an app, like any other ride hailing service. "But our vehicles show up without anyone else inside," they say.

The entire fleet is all-electric and the vehicles are equipped with a 360-view, with the ability to react to whatever they encounter on the road.

They test their vehicles using simulations, through millions of scenarios and virtual miles; they’ve also driven more than 4 million real miles, mostly in San Francisco.

They have not defined what the cost will be but according to The Verge, the rates in San Francisco vary depending on length of trip and time of day: "A customer taking a 1.3-mile trip would pay 90 cents per mile and 40 cents per minute, in addition to a $5 base fee and 1.5 percent city tax, for a total of $8.72." By comparison, an Uber ride for the same trip would cost at least $10.41.

The company was founded in 2013 and vehicles began to hit the road in 2022. They operate a total fleet of roughly 300 all-electric AVs, powered 100 percent by renewable energy. In addition to Austin, they operate in San Francisco and Phoenix, where they've completed 35,000 self-driving deliveries in a partnership with Walmart.

According to a statement from CEO Kyle Vogt, they'll begin supervised driving (with a safety driver behind the wheel) in Houston as they finetune their AI technology to understand the nuances and unique elements of the city, with Dallas to follow shortly after.

In a blog post, Vogt says their cars drive the speed limit and come to a complete stop at every stop sign. They respond to police sirens, flashing lights on fire trucks or ambulances, and stop signs that fold out of school buses.

They react to people on scooters, people using bike lanes, and cars driving on the wrong side of the road. "In short, they are designed to drive safely by obeying the law and driving in a humanlike way," he says. Actually, that sounds better than humans.

When vehicles encounter a situation where they aren’t 100 percent sure of what to do, they slow down or stop and pull over to the side of the road. This has caused some bumps in San Francisco where cars stopped and idled in the street for no apparent reason, delaying bus riders and disrupting the work of firefighters.

Some of the "bumps" have been comical, such as the 2022 incident in which a confused San Francisco police officer pulled a Cruise over, and then the Cruise drove away.

And as Reuters notes, autonomous vehicles have not rolled out as fast as anticipated, due to regulations, safety investigations, and arduous technology.

When Cruise first enters a city, they hire a mapping and data collection team to learn bike lanes, school zones, and major intersections. But most of the time, the vehicles will be carrying riders in the back seat, or completely empty and en route to another pickup.

The company partners with first responders, including police and fire departments, to ensure they’re ready and familiar with how to interact with the vehicles, engaging with those agencies before and after launch.

"Our guiding mission has always been to improve road safety, reduce emissions, and reduce congestion with our driverless ride-hail service in cities, which is where we’ll see the most significant positive impact the soonest," Vogt says. "Houston and Dallas are committed to reducing traffic deaths as part of their Vision Zero commitments, and we are excited to operate in and partner with these new communities in this shared mission."

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Why 2026 must be the year Texas makes transmission as its top energy priority

guest column

Texas takes pride in running one of the most dynamic and deregulated energy markets in the world, but conversations about electricity rarely focus on what keeps it moving: transmission infrastructure.

As ERCOT projects unprecedented electricity demand growth and grid operators update their forecasts for 2026, it’s becoming increasingly clear that generation, whether renewable or fossil, is only part of the solution. Transmission buildout and sound governing policy now stand as the linchpin for reliability, cost containment, and long-term resilience in a grid under unprecedented stress.

At the heart of this urgency is one simple thing: demand. Over 2024 and 2025, ERCOT has been breaking records at a pace we haven’t seen before. From January through September of 2025 alone, electricity use jumped more than 5% over the year before, the fastest growth of any major U.S. grid. And it’s not slowing down.

The Energy Information Administration expects demand to climb another 14% in 2026, pushing total consumption to roughly 425 terawatt-hours in just the first nine months. That surge isn’t just about more people moving to Texas or running their homes differently; it’s being driven by massive industrial and technology loads that simply weren’t part of the equation ten years ago.

The most dramatic contributor to that rising demand is large-scale infrastructure such as data centers, cloud computing campuses, crypto mining facilities, and electrified industrial sectors. In the latest ERCOT planning update, more than 233 gigawatts of total “large load” interconnection requests were being tracked, an almost 300% jump over just a year earlier, with more than 70% of those requests tied to data centers.

Imagine hundreds of new power plants requesting to connect to the grid, all demanding uninterrupted power 24/7. That’s the scale of the transition Texas is facing, and it’s one of the major reasons transmission planning is no longer back-of-house policy talk but a central grid imperative.

Yet transmission is complicated, costly, and inherently long-lead. It takes three to six years to build new transmission infrastructure, compared with six to twelve months to add a new load or generation project.

This is where Texas will feel the most tension. Current infrastructure can add customers and power plants quickly, but the lines to connect them reliably take time, money, permitting, and political will.

To address these impending needs, ERCOT wrapped up its 2024 Regional Transmission Plan (RTP) at the end of last year, and the message was pretty clear: we’ve got work to do. The plan calls for 274 transmission projects and about 6,000 miles of new, rebuilt, or upgraded lines just to handle the growth coming our way and keep the lights on.

The plan also suggests upgrading to 765-kilovolt transmission lines, a big step beyond the standard 345-kV system. When you start talking about 765-kilovolt transmission lines, that’s a big leap from what Texas normally uses. Those lines are built to move a massive amount of power over long distances, but they’re expensive and complicated, so they’re only considered when planners expect demand to grow far beyond normal levels. Recommending them is a clear signal that incremental upgrades won’t be enough to keep up with where electricity demand is headed.

There’s a reason transmission is suddenly getting so much attention. ERCOT and just about every industry analyst watching Texas are projecting that electricity demand could climb as high as 218 gigawatts by 2031 if even a portion of the massive queue of large-load projects actually comes online. When you focus only on what’s likely to get built, the takeaway is the same: demand is going to stay well above anything we’ve seen before, driven largely by the steady expansion of data centers, cloud computing, and digital infrastructure across the state.

Ultimately, the decisions Texas makes on transmission investment and the policies that determine how those costs are allocated will shape whether 2026 and the years ahead bring greater stability or continued volatility to the grid. Thoughtful planning can support growth while protecting reliability and affordability, but falling short risks making volatility a lasting feature of Texas’s energy landscape.

Transmission Policy: The Other Half of the Equation

Infrastructure investment delivers results only when paired with policies that allow it to operate efficiently and at scale. Recognizing that markets alone won’t solve these challenges, Texas lawmakers and regulators have started creating guardrails.

For example, Senate Bill 6, now part of state law, aims to improve how large energy consumers are managed on the grid, including new rules for data center operations during emergencies and requirements around interconnection. Data centers may even be required to disconnect under extreme conditions to protect overall system reliability, a novel and necessary rule given their scale.

Similarly, House Bill 5066 changed how load forecasting occurs by requiring ERCOT to include utility-reported projections in its planning processes, ensuring transmission planning incorporates real-world expectations. These policy updates matter because grid planning isn’t just a technical checklist. It’s about making sure investment incentives, permitting decisions, and cost-sharing rules are aligned so Texas can grow its economy without putting unnecessary pressure on consumers.

Without thoughtful policy, we risk repeating past grid management mistakes. For example, if transmission projects are delayed or underfunded while new high-demand loads come online, we could see congestion worsen. If that happens, affordable electricity would be located farther from where it’s needed, limiting access to low-cost power for consumers and slowing overall economic growth. That’s especially critical in regions like Houston, where energy costs are already a hot topic for households and businesses alike.

A 2026 View: Strategy Over Shortage

As we look toward 2026, here are the transmission and policy trends that matter most:

  • Pipeline of Projects Must Stay on Track: ERCOT’s RTP is ambitious, and keeping those 274 projects, thousands of circuit miles, and next-generation 765-kV lines moving is crucial for reliability and cost containment.
  • Large Load Forecasting Must Be Nuanced: The explosion in large-load interconnection requests, whether or not every project materializes, signals demand pressure that transmission planners cannot ignore. Building lines ahead of realized demand is not wasteful planning; it’s insurance against cost and reliability breakdowns.
  • Policy Frameworks Must Evolve: Laws like SB 6 and HB 5066 are just the beginning. Texas needs transparent rules for cost allocation, interconnection standards, and emergency protocols that keep consumers protected while supporting innovation and economic growth.
  • Coordination Among Stakeholders Is Critical: Transmission doesn’t stop at one utility’s borders. Regional cooperation among utilities, ERCOT, and local stakeholders is essential to manage congestion and develop systemwide reliability solutions.

Here’s the bottom line: Generation gets the headlines, but transmission makes the grid work. Without a robust transmission buildout and thoughtful governance, even the most advanced generation mix that includes wind, solar, gas, and storage will struggle to deliver the reliability Texans expect at a price they can afford.

In 2026, Texas is not merely testing its grid’s capacity to produce power; it’s testing its ability to move that power where it’s needed most. How we rise to meet that challenge will define the next decade of energy in the Lone Star State.

———

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

New Gulf Coast recycling plant partners with first-of-kind circularity hub

now open

TALKE USA Inc., the Houston-area arm of German logistics company TALKE, officially opened its Recycling Support Center earlier this month.

Located next to the company's Houston-area headquarters, the plant will process post-consumer plastic materials, which will eventually be converted into recycling feedstock. Chambers County partially funded the plant.

“Our new recycling support center expands our overall commitment to sustainable growth, and now, the community’s plastics will be received here before they head out for recycling. This is a win for the residents of Chambers County," Richard Heath, CEO and president of TALKE USA, said in a news release.

“The opening of our recycling support facility offers a real alternative to past obstacles regarding the large amount of plastic products our local community disposes of. For our entire team, our customers, and the Mont Belvieu community, today marks a new beginning for effective, safe, and sustainable plastics recycling.”

The new plant will receive the post-consumer plastic and form it into bales. The materials will then be processed at Cyclyx's new Houston Circularity Center, a first-of-its-kind plastic waste sorting and processing facility being developed through a joint venture between Cyclix, ExxonMobil and LyondellBasell.

“Materials collected at this facility aren’t just easy-to-recycle items like water bottles and milk jugs. All plastics are accepted, including multi-layered films—like chip bags and juice pouches. This means more of the everyday plastics used in the Chambers County community can be captured and kept out of landfills,” Leslie Hushka, chief impact officer at Cyclyx, added in a LinkedIn post.

Cyclyx's circularity center is currently under construction and is expected to produce 300 million pounds of custom-formulated feedstock annually.

Houston quantum simulator research reveals clues for solar energy conversion

energy flow

Rice University scientists have used a programmable quantum simulator to mimic how energy moves through a vibrating molecule.

The research, which was published in Nature Communications last month, lets the researchers watch and control the flow of energy in real time and sheds light on processes like photosynthesis and solar energy conversion, according to a news release from the university.

The team, led by Rice assistant professor of physics and astronomy Guido Pagano, modeled a two-site molecule with one part supplying energy (the donor) and the other receiving it (the acceptor).

Unlike in previous experiments, the Rice researchers were able to smoothly tune the system to model multiple types of vibrations and manipulate the energy states in a controlled setting. This allowed the team to explore different types of energy transfer within the same platform.

“By adjusting the interactions between the donor and acceptor, coupling to two types of vibrations and the character of those vibrations, we could see how each factor influenced the flow of energy,” Pagano said in the release.

The research showed that more vibrations sped up energy transfer and opened new paths for energy to move, sometimes making transfer more efficient even with energy loss. Additionally, when vibrations differed, efficient transfer happened over a wider range of donor–acceptor energy differences.

“The results show that vibrations and their environment are not simply background noise but can actively steer energy flow in unexpected ways,” Pagano added.

The team believes the findings could help with the design of organic solar cells, molecular wires and other devices that depend on efficient energy or charge transfer. They could also have an environmental impact by improving energy harvesting to reduce energy losses in electronics.

“These are the kinds of phenomena that physical chemists have theorized exist but could not easily isolate experimentally, especially in a programmable manner, until now,” Visal So, a Rice doctoral student and first author of the study, added in the release.

The study was supported by The Welch Foundation,the Office of Naval Research, the National Science Foundation CAREER Award, the Army Research Office and the Department of Energy.