The controversy that dogged the climate summit shows the extent to which misinformation, politics, and outdated beliefs reign supreme — and hinder progress toward net zero, says this Texas expert. Photo by COP28 / Anthony Fleyhan

Before it even started, COP28 drew sharp condemnation from activists and left-leaning politicians who took issue with the climate conference location: the United Arab Emirates, a leading oil and gas-producing nation.

“Time to say ‘the F-words’?” CNBC asked in one headline, referring of course to “fossil fuel.” A group of US and EU lawmakers called for the removal of COP28 President Sultan al-Jaber, head of the UAE’s national oil company Adnoc. And former Vice President Al Gore slammed the host nation and the summit itself, saying it was “abusing the public’s trust” because al-Jaber couldn’t be an honest broker of a climate deal.

I get it. The optics were certain to raise eyebrows and provide low-hanging fruit for critics. But the extent to which the conference became a global flash point was surprising even to the most cynical of onlookers. Finger-pointing took center stage, relegating rational discussion to the shadows. Misinformation and distrust flourished as a tired old energy transition narrative took hold — one that pits villain oil and gas against hero Renewables in an epic fight to save the planet.

At Workrise we follow data, not ideology, you’ll know that success in the energy transition is an all-of-the-above proposition. And in this regard, COP28 made progress. Reading the text of the agreement it’s clear that the delegation has adopted the view that the dominant suppliers of energy to the world — oil and gas companies — must be a part of the solution going forward, and accepted the reality that fuel sources like nuclear and natural gas must be leveraged if we are to reach our 2050 targets.

This pragmatic approach makes sense all the time, but it has particular resonance now as the industry undergoes a sea change in the form of consolidation. Nowhere is this M&A wave more keenly felt than in Texas, where the value of 2023 mergers and acquisitions in the Permian basin reached more than $100 billion after massive deals including ExxonMobil's proposed $60 billion purchase of Pioneer Natural Resources and Chevron's $53 billion acquisition of Hess. These kinds of deals will bring a seismic shift in the way the industry operates — including by enabling companies like Exxon and Chevron to find new production efficiencies, and further bake emissions reduction into their operating models.

But what becomes clear when reading the COP28 agreement is that in nearly all cases, the room was too divided to put measurable targets on the board that are enforceable. Nearly every “commitment” comes with words that provide loopholes and outs.

So what we have is a “deal” that stops short of the kind of black-and-white commitments that create accountability — a deal with language folks can live with, but that won’t meaningfully change realities on the ground. Which begs the question: Why is that, and why can’t we do more?

Two words: dogma and hostility. They are the root cause of the polarization that gripped the conference and steers the wider conversation about the energy transition worldwide. With those powerful forces holding sway, we will never get to agreements that have the teeth required to move the needle on this global challenge.

At the end of the day, it was impressive to see Al Jaber emerge from the summit with a deal of any kind, despite the fire storm that he fueled with his comments earlier in the conference.

What the world needs is leaders who are willing to put aside ideology, rely on proven facts, and grab every opportunity they have to move the chains. Just as important, those leaders need to understand the sensitivity of this topic — and how easily it becomes cannon fodder for those who seek to weaponize it. Without the right leadership, how can we hope for the general public to engage meaningfully in this debate, and to understand what their vote — whether they cast it with their wallet or at the ballot box — truly means?

So long as both sides of this debate dig in and throw stones at each other, the journey to net zero will continue to get longer and more arduous.

———

Joshua Trott is chief revenue officer at Austin-based Workrise, which is a labor provider and supply chain solution for energy companies — including some in Houston.

Looking back at top energy transition news from the year, a podcast to stream, and more of what to know going into the last week of 2023. Photo via Getty Images

LYB buys in on plastics recycling co., a podcast to stream, and more to know this week

take note

Editor's note: It's a new week — start it strong with three quick things to catch up on in Houston's energy transition: looking back on top news from 2023, a podcast to stream, and more.

LYB acquires German plastic waste sourcing and engineering company

Houston-based LyondellBasell, rebranded recently to LYB, announced earlier this month that it has acquired a minority share in Source One GmbH, Leiferde, Germany, a plastic waste sourcing and engineering company, that specializes specifically in solutions for hard-to-recycle post-consumer plastic waste. This investment gives LYB access to Source One's engineering and plastic waste sourcing services, according to a news release.

"We are committed to support the growing demand of our customers for circular solutions," says Yvonne van der Laan, LyondellBasell executive vice president of Circular and Low Carbon Solutions, in the news release. “With the investment in Source One we are taking another important step to secure access to plastic waste for our recycling activities and to strengthen our Circulen product portfolio of material made from recyclable or renewable resources.”

Podcast: Moji Karimi of Cemvita talks COP28, growth of the company, and more

Moji Karimi, CEO and co-founder of Cemvita, joined the Houston Innovators Podcast last week before he had even recovered from jet lag to talk about his biggest takeaways from 2023 United Nations Climate Change Conference or Conference of the Parties, more commonly known as COP28.

"It was a pretty amazing experience," Karimi says, comparing the event to how CERAWeek has evolved to really have a strong presence in its innovation-focused track called Agora. "This year you had a massive section for innovation and sustainability. I think that will become a theme in COP29 and beyond to bring entrepreneurs, investors, and more participating in the event."

Karimi's three big observations are outlined here, as is the full podcast with him sharing more about Cemvita's growth this year.

Fresh from COP28, Houston innovator Moji Karimi shared his biggest observations from the event. Photo courtesy of Digital Wildcatters

3 takeaways from COP28 from Houston biotech, sustainability founder

big picture

Before he even had a chance to recover from the jetlag, Moji Karimi was thinking about his biggest takeaways from 2023 United Nations Climate Change Conference or Conference of the Parties, more commonly known as COP28.

Karimi, CEO and co-founder of Cemvita, a biotech company with sustainable solutions for the energy transition, joined the Houston Innovators Podcast this week to discuss what his biggest takeaways were.

"It was a pretty amazing experience," Karimi says, comparing the event to how CERAWeek has evolved to really have a strong presence in its innovation-focused track called Agora. "This year you had a massive section for innovation and sustainability. I think that will become a theme in COP29 and beyond to bring entrepreneurs, investors, and more participating in the event."

Karimi's three big observations are outlined below, as is the full podcast with him sharing more about Cemvita's growth this year.


Expanding the environmental footprint

One of the big things Karimi observed was that there seems to be a rising conversation about not only how carbon emissions are effecting climate change, but that companies and countries need to look more broadly at their environmental impacts.

Specifically, Karimi learned about the new framework Task Force on Nature-Related Financial Disclosures (TNFD), an addition to Task Force on Climate-Related Financial Disclosures (TCFD), which was introduced a few years back.

"TNFD is the new framework to capture non-carbon emissions-related aspects of an impact on the environment, such as biodiversity loss," he says.

Language has evolved to reflect this shift too, Karimi says, referencing "nature-positive tech" and "nature tech." He says he feels like Europe has led the way so far, but in the next year or two the conversations will come to the United States.

"Some of this is driven by COP30 being in Brazil and being focused on biodiversity," he adds.

A major focus on nuclear

Karimi says he saw a lot of support for nuclear energy, which can lower the cost and carbon intensity of power. Personally, Karimi is wondering what happens if and win nuclear is better adapted, solving the current challenges the power industries face.

"What I'm interested in is so many other climate tech applications that are enabled once you have low-cost, and low-carbon power from nuclear energy. That will be interesting to watch," he says.

Actionism, not activism

Lastly, Karimi says he saw a huge push toward action, not simply advocacy. The emphasis on "actionism" included activations for COP28 attendees to share what actions could be taken now.

"The point was to all come together, no matter where you come from, and focus on what actions you can take," he says. "It was interesting to bring people together in a different way. We'll see how that translates into actions from here on."


A new initiative from federal agencies hopes to enhance access to information about greenhouse gas emissions. Photo via nasa.gov

NASA, EPA share plans for greenhouse gas initiative at COP28

need some space

Two of Houston's top industries are in for a collaboration of sorts, according to a recent announcement at the 28th annual United Nations Climate Conference, or COP28.

NASA, the United States Environmental Protection Agency, and other U.S. agencies have unveiled the plans for the U.S. Greenhouse Gas Center, a hub for collaboration for the federal agencies and nonprofit and private sector partners.

“NASA data is essential to making the changes needed on the ground to protect our climate. The U.S. Greenhouse Gas Center is another way the Biden-Harris Administration is working to make critical data available to more people – from scientists running data analyses, to government officials making decisions on climate policy, to members of the public who want to understand how climate change will affect them,” NASA Administrator Bill Nelson says in a news release. “We’re bringing space to Earth to benefit communities across the country.”

NASA is taking the lead implementing agency position for the new center, which will be run by Argyro Kavvada, center program manager, who's based in NASA headquarters in Washington. The EPA, the National Institute of Standards and Technology, and the National Oceanic and Atmospheric Administration will also be involved and provide greenhouse gas datasets and analysis tools.

“A goal of the U.S. Greenhouse Gas Center is to accelerate the collaborative use of Earth science data,” Kavvada says. “We’re working to get the right data into the hands of people who can use it to manage and track greenhouse gas emissions.”

The center’s data catalog will be available online and target three areas: greenhouse gas emissions from humans, naturally occurring greenhouse gas emissions, and large methane emission event identification and quantification from aircraft and space-based data.

According to the release, the center is one piece of the current administration's effort to amplify information on greenhouse gas emissions, as outlined in the recently released National Strategy to Advance an Integrated U.S. Greenhouse Gas Measurement, Monitoring, and Information System.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice research team's study keeps CO2-to-fuel devices running 50 times longer

new findings

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.

The case for smarter CUI inspections in the energy sector

Guest Column

Corrosion under insulation (CUI) accounts for roughly 60% of pipeline leaks in the U.S. oil and gas sector. Yet many operators still rely on outdated inspection methods that are slow, risky, and economically unsustainable.

This year, widespread budget cuts and layoffs across the sector are forcing refineries to do more with less. Efficiency is no longer a goal; it’s a mandate. The challenge: how to maintain safety and reliability without overextending resources?

Fortunately, a new generation of technologies is gaining traction in the oil and gas industry, offering operators faster, safer, and more cost-effective ways to identify and mitigate CUI.

Hidden cost of corrosion

Corrosion is a pervasive threat, with CUI posing the greatest risk to refinery operations. Insulation conceals damage until it becomes severe, making detection difficult and ultimately leading to failure. NACE International estimates the annual cost of corrosion in the U.S. at $276 billion.

Compounding the issue is aging infrastructure: roughly half of the nation’s 2.6 million miles of pipeline are over 50 years old. Aging infrastructure increases the urgency and the cost of inspections.

So, the question is: Are we at a breaking point or an inflection point? The answer depends largely on how quickly the industry can move beyond inspection methods that no longer match today's operational or economic realities.

Legacy methods such as insulation stripping, scaffolding, and manual NDT are slow, hazardous, and offer incomplete coverage. With maintenance budgets tightening, these methods are no longer viable.

Why traditional inspection falls short

Without question, what worked 50 years ago no longer works today. Traditional inspection methods are slow, siloed, and dangerously incomplete.

Insulation removal:

  • Disruptive and expensive.
  • Labor-intensive and time-consuming, with a high risk of process upsets and insulation damage.
  • Limited coverage. Often targets a small percentage of piping, leaving large areas unchecked.
  • Health risks: Exposes workers to hazardous materials such as asbestos or fiberglass.

Rope access and scaffolding:

  • Safety hazards. Falls from height remain a leading cause of injury.
  • Restricted time and access. Weather, fatigue, and complex layouts limit coverage and effectiveness.
  • High coordination costs. Multiple contractors, complex scheduling, and oversight, which require continuous monitoring, documentation, and compliance assurance across vendors and protocols drive up costs.

Spot checks:

  • Low detection probability. Random sampling often fails to detect localized corrosion.
  • Data gaps. Paper records and inconsistent methods hinder lifecycle asset planning.
  • Reactive, not proactive: Problems are often discovered late after damage has already occurred.

A smarter way forward

While traditional NDT methods for CUI like Pulsed Eddy Current (PEC) and Real-Time Radiography (RTR) remain valuable, the addition of robotic systems, sensors, and AI are transforming CUI inspection.

Robotic systems, sensors, and AI are reshaping how CUI inspections are conducted, reducing reliance on manual labor and enabling broader, data-rich asset visibility for better planning and decision-making.

ARIX Technologies, for example, introduced pipe-climbing robotic systems capable of full-coverage inspections of insulated pipes without the need for insulation removal. Venus, ARIX’s pipe-climbing robot, delivers full 360° CUI data across both vertical and horizontal pipe circuits — without magnets, scaffolding, or insulation removal. It captures high-resolution visuals and Pulsed Eddy Current (PEC) data simultaneously, allowing operators to review inspection video and analyze corrosion insights in one integrated workflow. This streamlines data collection, speeds up analysis, and keeps personnel out of hazardous zones — making inspections faster, safer, and far more actionable.

These integrated technology platforms are driving measurable gains:

  • Autonomous grid scanning: Delivers structured, repeatable coverage across pipe surfaces for greater inspection consistency.
  • Integrated inspection portal: Combines PEC, RTR, and video into a unified 3D visualization, streamlining analysis across inspection teams.
  • Actionable insights: Enables more confident planning and risk forecasting through digital, shareable data—not siloed or static.

Real-world results

Petromax Refining adopted ARIX’s robotic inspection systems to modernize its CUI inspections, and its results were substantial and measurable:

  • Inspection time dropped from nine months to 39 days.
  • Costs were cut by 63% compared to traditional methods.
  • Scaffolding was minimized 99%, reducing hazardous risks and labor demands.
  • Data accuracy improved, supporting more innovative maintenance planning.

Why the time is now

Energy operators face mounting pressure from all sides: aging infrastructure, constrained budgets, rising safety risks, and growing ESG expectations.

In the U.S., downstream operators are increasingly piloting drone and crawler solutions to automate inspection rounds in refineries, tank farms, and pipelines. Over 92% of oil and gas companies report that they are investing in AI or robotic technologies or have plans to invest soon to modernize operations.

The tools are here. The data is here. Smarter inspection is no longer aspirational — it’s operational. The case has been made. Petromax and others are showing what’s possible. Smarter inspection is no longer a leap but a step forward.

---

Tyler Flanagan is director of service & operations at Houston-based ARIX Technologies.


Scientists warn greenhouse gas accumulation is accelerating and more extreme weather will come

Climate Report

Humans are on track to release so much greenhouse gas in less than three years that a key threshold for limiting global warming will be nearly unavoidable, according to a study released June 19.

The report predicts that society will have emitted enough carbon dioxide by early 2028 that crossing an important long-term temperature boundary will be more likely than not. The scientists calculate that by that point there will be enough of the heat-trapping gas in the atmosphere to create a 50-50 chance or greater that the world will be locked in to 1.5 degrees Celsius (2.7 degrees Fahrenheit) of long-term warming since preindustrial times. That level of gas accumulation, which comes from the burning of fuels like gasoline, oil and coal, is sooner than the same group of 60 international scientists calculated in a study last year.

“Things aren’t just getting worse. They’re getting worse faster,” said study co-author Zeke Hausfather of the tech firm Stripe and the climate monitoring group Berkeley Earth. “We’re actively moving in the wrong direction in a critical period of time that we would need to meet our most ambitious climate goals. Some reports, there’s a silver lining. I don’t think there really is one in this one.”

That 1.5 goal, first set in the 2015 Paris agreement, has been a cornerstone of international efforts to curb worsening climate change. Scientists say crossing that limit would mean worse heat waves and droughts, bigger storms and sea-level rise that could imperil small island nations. Over the last 150 years, scientists have established a direct correlation between the release of certain levels of carbon dioxide, along with other greenhouse gases like methane, and specific increases in global temperatures.

In Thursday's Indicators of Global Climate Change report, researchers calculated that society can spew only 143 billion more tons (130 billion metric tons) of carbon dioxide before the 1.5 limit becomes technically inevitable. The world is producing 46 billion tons (42 billion metric tons) a year, so that inevitability should hit around February 2028 because the report is measured from the start of this year, the scientists wrote. The world now stands at about 1.24 degrees Celsius (2.23 degrees Fahrenheit) of long-term warming since preindustrial times, the report said.

Earth's energy imbalance

The report, which was published in the journal Earth System Science Data, shows that the rate of human-caused warming per decade has increased to nearly half a degree (0.27 degrees Celsius) per decade, Hausfather said. And the imbalance between the heat Earth absorbs from the sun and the amount it radiates out to space, a key climate change signal, is accelerating, the report said.

“It's quite a depressing picture unfortunately, where if you look across the indicators, we find that records are really being broken everywhere,” said lead author Piers Forster, director of the Priestley Centre for Climate Futures at the University of Leeds in England. “I can't conceive of a situation where we can really avoid passing 1.5 degrees of very long-term temperature change.”

The increase in emissions from fossil-fuel burning is the main driver. But reduced particle pollution, which includes soot and smog, is another factor because those particles had a cooling effect that masked even more warming from appearing, scientists said. Changes in clouds also factor in. That all shows up in Earth’s energy imbalance, which is now 25% higher than it was just a decade or so ago, Forster said.

Earth’s energy imbalance “is the most important measure of the amount of heat being trapped in the system,” Hausfather said.

Earth keeps absorbing more and more heat than it releases. “It is very clearly accelerating. It’s worrisome,” he said.

Crossing the temperature limit

The planet temporarily passed the key 1.5 limit last year. The world hit 1.52 degrees Celsius (2.74 degrees Fahrenheit) of warming since preindustrial times for an entire year in 2024, but the Paris threshold is meant to be measured over a longer period, usually considered 20 years. Still, the globe could reach that long-term threshold in the next few years even if individual years haven't consistently hit that mark, because of how the Earth's carbon cycle works.

That 1.5 is “a clear limit, a political limit for which countries have decided that beyond which the impact of climate change would be unacceptable to their societies,” said study co-author Joeri Rogelj, a climate scientist at Imperial College London.

The mark is so important because once it is crossed, many small island nations could eventually disappear because of sea level rise, and scientific evidence shows that the impacts become particularly extreme beyond that level, especially hurting poor and vulnerable populations, he said. He added that efforts to curb emissions and the impacts of climate change must continue even if the 1.5 degree threshold is exceeded.

Crossing the threshold "means increasingly more frequent and severe climate extremes of the type we are now seeing all too often in the U.S. and around the world — unprecedented heat waves, extreme hot drought, extreme rainfall events, and bigger storms,” said University of Michigan environment school dean Jonathan Overpeck, who wasn't part of the study.

Andrew Dessler, a Texas A&M University climate scientist who wasn't part of the study, said the 1.5 goal was aspirational and not realistic, so people shouldn’t focus on that particular threshold.

“Missing it does not mean the end of the world,” Dessler said in an email, though he agreed that “each tenth of a degree of warming will bring increasingly worse impacts.”